
Unified platform for subject-specific
neuromuscular and finite element

simulations

P.W.A.M. Peeters - Utrecht University

Supervisor: Dr. Nicolas Pronost
Thesis number: ICA-0487953

January 2012

2

3

Abstract

Studying human motion using musculoskeletal models is a common practice in the field
of biomechanics. By using such models, recorded subject’s motions can be analyzed in
successive steps from kinematics and dynamics to muscle control. However simulating
muscle deformation and interaction is not possible, but other methods such as a finite
element (FE) simulation are very well suited to simulate deformation and interaction of
objects. We present a pipeline that can combine these two, by automatically generating
a FE simulation based on subject-specific segmented MRI data, and a motion performed
by the same subject. The pipeline resolves several types of data inconsistencies: noise
in the dataset is removed by smoothing, objects that contain self-intersecting parts are
corrected, missing tendon geometries are generated automatically and overlaps between
objects are resolved. Much effort was made to resolve overlaps in a meaningful way of
which several methods are discussed. This report shows the different steps of the pipeline,
such as solving overlaps in the segmented surfaces, generating the volume mesh and the
connection to a musculoskeletal simulation. The pipeline is validated by recreating an
experiment done on live subjects where passive hamstring resistance was measured and
by comparing experimental results.

4

Acknowledgments

This work was an effort of two years, beginning in February 2010 in Lausanne at the EPFL and
ending here in Utrecht. I would like to thank those that helped me on this journey, first and foremost
Dr. Nicolas Pronost, who was my supervisor during my stay in Lausanne and started working at
Utrecht University at the same time I returned from Lausanne. I would like to thank Dr. Anders
Sandholm, who worked with Dr. Pronost in Lausanne as a PhD and helped me during my stay in
Lausanne. Dr. Arjan Egges, who helped me find the project and professors in Lausanne, and who
supervised and helped me during the entire course of this project.

Additionally, I would like the attendees of the graduate meetings for their critical views and
helpful ideas, especially Arno Kamphuis, Ben van Basten and Thomas Geijtenbeek.

Finally, I would like thank my friends and family for their incredible patience and support through
these years.

5

6

Table of contents

1 Introduction 9

2 Related work 11
2.1 Neuromusculoskeletal simulation . 11
2.2 Finite element simulation in biomechanics . 12
2.3 Geometric algorithms . 12

2.3.1 Surface smoothing . 13
2.3.2 Self intersections . 14
2.3.3 Self intersect removal algorithm . 14
2.3.4 Surface intersection removal . 17
2.3.5 CGAL . 17

2.4 Research objectives . 17

3 Pipeline overview 19

4 MRI to volume mesh 21
4.1 MRI segmentation . 21

4.1.1 Bones and muscles . 21
4.1.2 Attachments and tendons . 21

4.2 Stage overview . 22
4.3 Smoothing . 22
4.4 Removing unwanted components . 22
4.5 Generating missing tendons . 25
4.6 Resolve self-intersections . 26

4.6.1 Remove degenerate triangles . 26
4.6.2 Finding a seed triangle . 27

4.7 Resolving overlaps . 28
4.7.1 Order of overlap removal . 28

4.8 Generating volume meshes . 28
4.9 Creating attachment and tendon convex hulls . 29

4.9.1 Converting hulls into volume mesh indices . 30

5 Resolving overlaps 31
5.1 Push-based method . 31
5.2 Shrink-based method . 33

5.2.1 Shrink by smoothing . 33
5.2.2 Shrink to skeleton . 34

5.3 Overlap resolving using boolean operators . 36
5.3.1 Carve . 36
5.3.2 Substraction by self-intersection removal . 37

6 Experiment 39
6.1 Musculoskeletal input . 39

6.1.1 Musculoskeletal models . 39
6.1.2 Coordinate system conversion . 39

6.2 Implementation . 40
6.2.1 OpenSim . 40
6.2.2 FEBio . 40
6.2.3 Pipeline parameters . 41

6.3 Hamstring stretch experiment . 43
6.3.1 Materials . 43
6.3.2 Muscles . 43

7

8 TABLE OF CONTENTS

6.3.3 Motion . 44
6.3.4 Results . 44
6.3.5 Analysis and comparison . 45

7 Conclusion and future work 51

A Software design 57
A.1 Libraries . 57

B Configuration files 59
B.1 File: setup.txt . 59
B.2 File: settings.txt . 59

CHAPTER 1

Introduction

The simulation of human motion using anatomically-based musculoskeletal models is of interest in
many fields including computer graphics, biomechanics, motion analysis, medical research and virtual
character animation. Many elements of the neuromusculoskeletal system interact to enable coordi-
nated movement. The neuromusculoskeletal system consists of the nervous system, the muscles and
the bones of the skeleton which all together enable the body to move. The bones constituting the
skeleton are moved by the muscles, which in turn are activated by the brain through the nervous
system. If a motion is performed repeatedly the muscle activation will show a pattern. This observed
pattern is called an excitation patterns. Much research has been done to understand the neuromus-
culoskeletal system, and so there is a large amount of data describing the mechanics of muscle, the
geometric relationships between muscles and bones, and the motions of joints [13, 47]. In the med-
ical field, the neuromuscular system has been studied to get a better understanding of movement
disorders in patients with cerebral palsy, stroke, osteoarthritis and Parkinson’s disease. Thousands
of patients have been studied, recording their neuromuscular excitation patterns both before and
after treatment. However, the detailed understanding of the function of each of the elements of the
neuromusculoskeletal system remains a major challenge.

Researching these diseases in real-life experiments has the following limitations. Firstly, many
important variables are hard to measure in an experiment, such as the force generated by each
muscle. Secondly, it is difficult to deduce cause-effect relationships in complex dynamic systems
based on experimental data alone. For example, an excitation pattern can be studied, but cannot be
changed in a real experiment, so cause-effect relations will always be made on a very high level, not
on a individual muscle level. Therefore, understanding the functions of muscles from experiments
is not straightforward. For example, electromyographic (EMG) recordings can give an indication of
when a muscle is active, but from the EMG alone, one cannot determine the motion of the body.
The difficulty arises because a muscle can apply force on joints over which it does not span and it
can move body segments to which it does not attach [52].

These problems that arise when analyzing experimental data can be solved for a large part
by combining the experimental data with a neuromuscular simulation framework. Neuromuscu-
lar simulation allows one to study the different facets of neuromuscular activity, specifically the
cause-and-effect relationships between neuromuscular excitation patterns, muscle forces and result-
ing motion of the body. It can integrate theoretical models describing the anatomy and physiology of
the neuromusculoskeletal system and the mechanics of multijoint movement. Simulations also enrich
experimental data by providing estimates of important variables such as muscle and joint forces,
which are difficult to measure experimentally.

A neuromusculoskeletal simulation is based on several sources of data. The most important one
is pose-based motion data, which tracks the motion of limbs by means of reflective markers, placed on
the body according to a specific protocol. Each marker has a specific place, based on an anatomical
landmark. Since the musculoskeletal model defines the same marker positions, each recorded marker
position has its corresponding marker within the musculoskeletal model.

Another approach to simulating motion is the use of finite element analysis (FEA). Finite element
analysis is a method to simulate a complex environment by representing it as a set of finite elements
which are interconnected by a means of (differential) equations, which define the properties of the
environment. The method of FEA has been applied in many fields, originally in the fields of civil
and aeronautic engineering, and over the years has proved itself also as a useful tool in biomechanics
research [45]. It enables detailed simulations of complex objects interacting and allows visualization
and extraction of important physical variables such as stress and strain on each element. Typical
datasources for creating FEA setups are volume scans of subjects, using techniques such as magnetic
resonance imaging (MRI) or X-ray computed tomography (CT). Using such a volumetric dataset
of a subject, a detailed FE simulation setup consisting of a set of elements that describe bones,
muscles and tendons, can be created. The main problem of these datasets are the inaccuracies which

9

10 CHAPTER 1. INTRODUCTION

arise from and are inherent to the data acquisition process. Even the best acquisition methods such
as using the visible human dataset need some steps to refine the data [45]. The result of a finite
element simulation also gives a motion that needs to be performed and therefore can be used to
study the interactions between muscles and bones of the subject. Since FEA offers such an advantage
in simulating interaction between muscles and bones over a more high-level type of simulation as
neuromusculoskeletal simulation, the question arises if we cannot create a bridge between these types
of simulation environments.

The aim of this study was to extend the capabilities of the musculoskeletal platform by using the
subject-specific motion generated using the musculoskeletal simulation environment to drive a MRI-
based finite element simulation. We designed a pipeline to connect the motion from a musculoskeletal
simulation to a finite element simulation that is generated from a subject-specific MRI-dataset. This
pipeline allows one to configure a finite element simulation by choosing specific muscles and bones
to be in the output simulation, thereby enabling the creation of simulations of any combination of
different muscles, bones and tendons within the dataset. In this study, we demonstrate the method
on the lower limb with a particular attention to the knee area, where many interactions take place
during daily activity. The method described in this report is a step toward the automatic simulation
of muscle deformations in virtual humans in a predictive manner through the interaction of the
muscle anatomy and function with applications in computer graphics. Similarly, the method can
simulate a complex muscle structure so that muscle function can be investigated in bioengineering.

The MRI dataset we used for this study is segmented using existing methods. Because of the
low-quality of some MRI volume scans, the segmented MRI data must be preprocessed in a series
of sequential steps. This pipeline uses several techniques from the field of geometric algorithms such
as smoothing, self-intersect removal and volume mesh generation.

The main contributions of this study to the field of musculoskeletal and FE simulations is the
automated pipeline, that resolves data inaccuracies, such as muscle overlaps and self-
intersecting muscles. This work also contributes by providing a connection between the
musculoskeletal motion and the FE simulation, and thereby creating a unified platform for
neuromuscular and finite element simulations.

This report is structured as follows. In the next Chapter, we explain the context in which this
research is situated and how this project differs from the most recent developments. In Chapter 3
we present an overview of the main steps in the pipeline we developed, from the input datasources
of MRI data and motion capture data to the final FEA simulation. In Chapter 4, we explain the
most important part of the pipeline, where we start from the MRI dataset and end with the volume
meshes that are used for the FEA simulation. Chapter 5 is dedicated to the problem of resolving of
overlaps between two closed surfaces representing elements from the musculoskeletal system, such as
bones or muscles. In Chapter 6 we describe how we connect the musculoskeletal motion data with
the FEA simulation, and we show an experiment performed with the pipeline presented. Finally, we
end with the conclusion in Chapter 7, where we summarize the findings of the study, and suggest
further possible research directions.

CHAPTER 2

Related work

In this chapter we give an overview of the research related to the creation of a unified platform
for neuromuscular and finite element simulation. First we explain the context of neuromuscular
simulation and its limits. Then we describe the existing research done in the field of finite element
simulation in biomechanics, specifically the simulation of muscle tissue and the use of versatile subject
specific data in both approaches.

2.1 Neuromusculoskeletal simulation

The value of dynamic simulations of movement is broadly recognized. It has been used to study
hamstring mechanics and rehabilitation of hamstring injury [46], to study the effects of a surgical
change in the musculoskeletal system [13] such as joint replacements [37] and to study muscular
coordination of walking [26,34], jumping [51] and cycling [39].

The biomechanics community has ongoing efforts to create detailed human musculoskeletal mod-
els. Although recent models [14,31] provide accurate muscle parameters for the whole body, they by
definition do not provide subject-specific geometrical data needed to simulate very detailed muscu-
lar models. Moreover, these models use lumped-parameter 1D muscle models that do not account
for the various muscle geometries. However, this model lacks information regarding to the force
generating properties of the muscles, as we used generic scaled values from [6]. In musculoskeletal
representation physiological parameters such as muscle lengths and muscle forces have been of pri-
mary interest, and the realistic visualization has played a secondary role. The muscle paths have
been represented using a series of points connected by line segments validated against image data
or cadaveric experiments [6]. The insights into muscle functioning gained from these models have
helped to improve diagnosis and treatment of people with movement disorders. The biomechanical
models that estimate the distribution of stresses, kinematics of joint elements during various pos-
tures, postural transitions and physical activities can provide significant insight into the underlying
mechanisms of a joint pathology and give an objective evaluation of its function [49].

Over the years, neuromuscular simulation has evolved from a fragmented community where each
research group developed their own simulation software into a more collaborative environment. This
has mostly been the result of the efforts by the creators of the OpenSim platform [14], by providing
an open-source platform that lets the user develop a wide variety of musculoskeletal models that can
be shared due to the open nature of the software. The simplest model of the knee joint is a single
rotation about a stationary axis in the sagittal plane. But more complex models exist, such as the
model of Walker et al. [47], and Yamaguchi et al. [48]. These models have already been implemented
in OpenSim musculoskeletal models respectively by Arnold et al. and Delp et al. [6, 13]. For the
experiment presented in this work we used the model from Walker et al. In this knee-joint model,
the configuration is parametrized by the flexion-extension angle. Dependent on this angle are two
translational degrees of freedom, anterior-posterior and inferior-superior, specified by two natural
cubic splines. The knee-model also specifies a slight rotation around the other two axis, each defined
by their own natural cubic spline.

OpenSim can process a marker-based motion file and apply inverse kinematics to fit the marker-
based motion to the desired Opensim model poses, where the joints are represented as rotations and
local translations. The orientation of the femur and the tibia in the FES is defined by the pose based
motion from OpenSim.

11

12 CHAPTER 2. RELATED WORK

2.2 Finite element simulation in biomechanics

Many attempts have been made at simulating muscles in high detail using the method of finite
element simulation [17, 23, 25], for example, to investigate intramuscular pressures [22]. It has also
been used to study the significance of myofascial force transmission which is relevant for the study
of muscular dystrophies [50].

Teran et al. have designed a framework for extracting and simulating musculoskeletal geometry
from the visible human dataset [5,45]. The visible human dataset consists of high resolution images
of millimeter-spaced cross sections of an adult human male. The visual human dataset was obtained
by making cryosections at 0.174mm intervals and photographed at a resolution of 1056 x 1528 pixels.
The study used a motion from a different subject, since the visual human dataset is obtained from
a deceased subject and no motion capture has been previously performed. The same dataset is
used in [16], where the dataset is used to create a 3D model of the human leg, specifically for
visualization of deformations and incorporates also the rendering of muscle fibers using textures.
In [45] the segmentation of this data was performed by creating a level set representation of each
tissue relevant for the simulation. The signed distance function required for the level set procedures
and to generate the triangulated surface that was used is the fast marching method [42]. They use
slice-by-slice contour sculpting to repair problem regions. First they manually examine each slice
visually to check for and eliminate errors. Level-set smoothing techniques are applied afterwards,
such as motion by mean curvature [35] to eliminate any further noise. In this project, we used
MRI data of a much lower resolution than the visual human dataset (See Section 4.1). Also, our
segmentation process is automatic and therefore needs a more rigorous repair process.

Blemker and Delp used an MRI dataset to create simulations of several sets of muscles to study
the variation in moment arms across fibers within a muscle [9] and to predict rectus femoris and
vastus intermedius fiber excursions [10]. They used MRI of live and cadaver specimen, and manually
segmented the areas of interest. They also created a fiber map for each muscle of interest, based
on template fiber geometries morphed to each muscles target fiber geometry. They use a manual
segmentation process instead of an automatic segmentation as is used in this work. While this
method of segmentation provides a surface mesh of higher quality, the method is not automatic.

The segmentation method used in this project comes from Schmid et al. [41]. This method is
based on an earlier work of Gilles et al. [18], who present a registration and segmentation method
for clinical MRI datasets based on discrete deformable models. It uses a force-based optimization
technique where each goal is defined as a force. Gilles uses forces on the medial axis (MA), where
the forces consist of shape and smoothing constraints, non-penetration constraints and external
forces of intensity profiles. Schmid extends this method with shape priors in the form of a principal
component analysis (PCA) of global shape variations and a Markov random field (MRF) of local
deformations that impose additional spatial restrictions in shape evolution. Unfortunately, since
the method is dependent on forces, balancing the weights of the non-penetration constraints and
the other constraint can be a difficult if not impossible task. Therefore, the resulting surfaces
suffer from intersections between surfaces and also self-intersections, which we resolve in this study.
Since the density of the vertices of the shape priors used by the method are uniformly spread, the
resulting shapes have nearly the same property. The segmentation algorithm also includes tendon
and attachment specifications. These are specified by vertex indices in the resulting muscle meshes.

We used the software package FEBio developed at the University of Utah [3,27] for solving the FE
simulation. FEBio is a nonlinear finite element solver that is specifically designed for biomechanical
applications. Since it does not provide mesh generation facilities, our pipeline creates the mesh and
a complete input file with which the FEBio solver can use without further necessary configuration.
Besides the FE solver, the developers of the FEBio software also provide a viewer for FEBio input
and output files. The latter can be used to make detailed analyses of results of the simulations, such
as visualizations of pressure and stress.

2.3 Geometric algorithms

During this research we had to apply a number of methods from the field of surface mesh manipu-
lation.

2.3. GEOMETRIC ALGORITHMS 13

Figure 2.1: Left: Segmentation artifacts: the vertices of the gastrocnemius muscle are not ordered in
a smoothly fashion. Right: Self intersection in the vastus intermedius muscle. The red line indicates
the border of the intersection.

2.3.1 Surface smoothing

First, we had to apply smoothing methods to remove artifacts from the segmentation algorithm
(see Figure 2.1). Taubin introduced a surface smoothing method that prevents shrinking of the
objects [43], by iteratively applying a Gaussian filter alternating a reverse growing step that does
not include the just erased low-frequencies. In the same year he proposed to view surface smoothing
as a signal processing problem [44], so the smoothing becomes an application of Fourier analysis, since
the classical Fourier transform of a signal can been seen as the linear combination of the eigenvectors
of the Laplacian operator. By defining a new operator taking the place of the Laplacian the Fourier
analysis can be extended to surfaces of arbitrary topology. Desburn et al. extended this idea by
formulating the Laplacian smoothing algorithm as time integration of the heat equation [15], which
leads to an implicit integration scheme. This approach resolves some problems with the uniform
approximations of the Laplacian by Taubin when applied to irregular connectivity meshes, such as
geometric distortion, numerical instability and slow convergence for large meshes. In this work we
applied the method of Taubin, since it is fitted to our type of surfaces, which are closed surfaces
with a very uniform vertex distribution. The method of Taubin [43] is the most suitable option with
regards to implementation complexity.

Smoothing without shrinkage algorithm

For this work, we implemented the smoothing technique of Taubin [43]. The method consists of
iteratively applying a Gaussian filter alternated with a reverse growing step that does not include
the just erased low-frequencies. Below we will explain the algorithm in detail.

Surfaces are represented as a list of vertices V = {vi : 1 ≤ i ≤ nV } and a list of faces F = {fk :
1 ≤ k ≤ nF } each face fk = (ik1 , . . . , i

k
nfk

) consisting of a sequence of indices in the vertex list. A

surface S = {V, F} is a pair of one vertex list combined with a face list. In this work, all surfaces
are consisting of only triangles, so the faces always have three vertices fk = (ik1 , i

k
2 , i

k
3).

A neighborhood of a vertex vi is a set vavi of indices of vertices. If the index j belongs to the
neighborhood i∗ we say that vj is a neighbor of vi. The neighborhood structure of a shape is defined
as the set of all the neighborhoods vavi : i = 1, 2, . . . , nV . In our implementation of the smoothing
algorithm we use the first order neighborhood, wherein two vertices are neighbors if they are both
present in the same face vavi = {j : j ∈ fk, i ∈ fk}.

In the Gaussian smoothing algorithm the position of each vertex is replaced by a weighted
combination of the positions of itself and its neighbors. Alternatively, Gaussian smoothing can
also be reformulated as follows. First, for each vertex vi, a vector average

∆vi =
∑
j∈vav

i

wij(vj − vi)

is computed as a weighted average of the vectors vj − vi, that extends from the current vertex to a
neighbor vertex vj . For each vertex vi the weights wij are positive and add up to one, but otherwise
they can be chosen in many different ways. The most obvious choice that produces good results is

14 CHAPTER 2. RELATED WORK

to set wij equal to the inverse of the number of neighbors 1/|vavi |. Once all the vector averages are
computed, the vertices are updated by adding to each vertex current position vi its corresponding
displacement vector

v′i = vi + λ∆vi

computed as the product of the vector average ∆vi and the scale factor λ, obtaining the new position
v′i. The scale factor, which can be a common value for all the vertices is a positive number 0 < λ < 1.

The advantage of the Gaussian smoothing method is that it produces geometric smoothing. The
main disadvantage is that to produce significant smoothing, the Gaussian smoothing algorithm must
be applied iteratively a large number of times using first order neighborhoods. However, by doing
so a significant shrinkage effect is also introduced.

This can be overcome if we apply the extension on the Gaussian smoothing algorithm developed
by Taubin [43]. After the first smoothing step with a positive scale factor λ, we apply a second
smoothing step but with a negative scale factor µ greater in magnitude than the first scale factor
(0 < λ < −µ). To produce a significant smoothing effect, these two steps must be repeated,
alternating the positive and negative scale factors a number of times. This method produces a low
pass filter effect, where surface curvature takes the place of frequency.

2.3.2 Self intersections

The surface data provided by the segmentation algorithm also contained self-intersections, as can be
seen in Figure 2.1. We removed these using the algorithm proposed by Jung, Shin and Choi [24], who
designed it originally to remove self-intersections from a raw offset triangular mesh. The algorithm
uses a region growing approach, keeping a list of valid triangles. Starting with an initial seed
triangle, the algorithm grows the valid region to neighboring triangles until it reaches triangles with
self-intersection. Then the region growing process crosses over the self-intersection and moves to
the adjacent valid triangle. Therefore the region growing traverses valid triangles and intersecting
triangles adjacent to valid triangles only. We chose to use this method, since it is the only work that
is specifically solving self-intersection problems.

2.3.3 Self intersect removal algorithm

The method of Jung is a region growing algorithm. Starting with a seed-triangle that is known to
be valid, the valid region is grown in all directions until an intersecting triangle is encountered. This
triangle is split into several sub-triangles and the growing continues on this sub-triangle level, until
a crossing is found. On the crossing, the corresponding sub-triangle of the intersecting triangle is
marked as valid and the growing continues.

In Figure 2.2 an overview of the self-intersection removal algorithm is shown. The method
requires the surface to be void of degenerate triangles, so the first step is to resolve those. Then, the
intersecting triangles of the surface mesh are identified. A seed triangle has to be determined after
which the region growing can start. As a final step, the excess triangles are discarded and the new
surface datastructure is constructed.

During the process, triangles are classified into three groups: valid triangles, invalid triangles,
and partially valid triangles. Valid triangles are those to be entirely contained in the valid region
and remain in the mesh after the self-intersection removal. Invalid triangles are the ones that are
to be deleted entirely. Partially valid triangles lie on the boundary between a valid region and an
invalid region. A partially valid triangle has intersections with other triangles, and a portion of a
partially valid triangle is to be included in the resulting mesh. A partially valid triangle needs to
be split into sub-triangles and these sub-triangles should again be classified into valid and invalid
sub-triangles.

Remove degenerate triangles

A degenerate triangle is a triangle with (nearly) zero area. Triangles with edges with a length
l < εe (zero length tolerance) and triangles with a minimum angle α < εα (zero angle tolerance)
are classified as degenerate triangles and are resolved by an edge collapse as in [21] and swapping
diagonal edges, respectively, as shown in Figure 4.6 on page 27.

2.3. GEOMETRIC ALGORITHMS 15

Remove degenerate triangles

Compute self-intersection

Find a seed triangle

Valid region growing

Trimming and stiching
Triangular surface without

self intersections

Triangular surface

Figure 2.2: Overview of the self-intersection removal algorithm.

Computing self-intersections

To avoid computing intersections between all triangles, we use a bucket structure for reducing the
number of triangle-triangle intersection (TTI) tests. The bucket structure partitions the input surface
mesh into buckets, where each bucket contains less than a fixed number C of triangles.

Constructing the bucket structure starts with a single bucket containing all triangles. If the
number of triangles in a bucket is larger than C, the bucket is subdivided into two by the plane
splitting the longest side of its AABB (axis aligned bounding box). Triangles crossing the bucket
plane are stored in both of the buckets. The bucket subdivision process is applied recursively until
each bucket contains less than C triangles or no improvement can be made.

For each bucket, we simply compare all pairs of triangles within a bucket. For the fast TTI
test we use the ‘interval overlap method’ suggested by Möller [32]. Each intersection segment stores
pointers to both the participating triangles and each triangle maintains a list of intersection segments
that belong to it.

Finding a seed triangle

A seed triangle is a valid triangle used to initiate the valid region growing. Let V C ⊂ V be the set
of vertices on the convex hull of V . If the input surface is a raw offset triangular mesh, V C belongs
to the valid region. Any triangle f ∈ F having at least one vertex in V C is valid or partially valid
and can serve as the seed triangle.

Valid region growing

The algorithm for valid region growing is composed of the following steps:

1. Each triangle has one of three states: unvisited, valid or partially valid. Initially, all triangles
are marked as unvisited.

2. The seed triangle is marked as valid and inserted into W , the set of wavefront triangles

3. If W is empty, go to 5, otherwise remove fk from W

4. For each unvisited triangle fl adjacent to fk, if fl has no intersections, it is marked as valid
and inserted into S. Otherwise, fl is marked as partially valid and inserted into P , the set
of partially valid triangles encountered. For each fl, the entrance edge ep, which is the edge
shared by fk and fl, is also saved.

5. If P is empty, go to step 7. Otherwise, remove a partially valid triangle fp from P .

6. Sub-triangulate fp, and grow the region over fp and its counterpart triangles. If another seed
triangle is found, go to 2, otherwise go to 4.

7. The valid region growing step is completed.

16 CHAPTER 2. RELATED WORK

Figure 2.3: Sub-triangulation and valid region growing in sub-triangular mesh (Image from [24].)

Sub-triangulation

A partially valid triangle fp has intersection segments in it and needs to be sub-triangulated. We now
need to perform two tasks: (1) to split fp into sub-triangles that contain the intersection segments
as their edges, as seen in Figure 2.3(a), (2) to propagate the valid region within the sub-triangular
mesh, as in Figure 2.3(b).

The steps in detail for the first task are as follows:

1. Split each edge eu of fp by all intersection segments si.

2. Split each si at the intersection points among them.

3. Sub-triangulate fp by 2D constrained Delaunay triangulation together with the edges and
intersection segments that were split in step 1 and 2

As shown in Figure 2.3(b), the valid region growing in the sub-triangular mesh starts from the
entrance edge ep. We will denote the sub-triangles as t#. The sub-triangle tsub0 which is adjacent to
ep is marked as valid and becomes the seed for the valid region growing in the sub-triangular mesh.
Then, the valid part of fp grows into neighboring sub-triangles until it reaches intersection segments,
which play the role of the entrance edge for the counterpart (partially valid) triangle fc in the next
step.

Crossing the river

The region growing process crosses over the self-intersection and moves to the sub-triangles of the
counterpart triangles. Figure 2.4 illustrates the detailed steps of propagating the valid region into
the sub-triangles of the counterpart triangle across the intersection of a partially valid triangle. This
process starts by sub-triangulating the counterpart triangle fc as in Section 2.3.3. In Figure 2.4(b),
there are two sub-triangles t3 and t4 of fc adjacent to the previously found entrance edge. (Note
that t1 and t2 are sub-triangles of fp.) By considering the normal vector orientation compatibility
with fp, the sub-triangle t4 is selected as valid one, which serves as the valid seed triangle in the
region growing within the sub-triangular mesh of fc. Eventually, as is shown in Figure 2.4(c), fv is
found as a valid triangle and is inserted into W .

Trimming and stitching

Since all partially valid triangles are replaced by sub-triangles and all valid triangles are marked,
the trimming and stitching can be done very simply. The trimming step is to retain valid triangles
only and to remove invalid ones. The next step is to stitch the self-intersection triangles together by
assigning topological relation between adjacent valid triangles.

2.4. RESEARCH OBJECTIVES 17

Figure 2.4: Detailed steps of crossing the river (Image from [24].)

2.3.4 Surface intersection removal

The surfaces resulting from the segmentation algorithm contain surfaces that intersect each other. In
the final pipeline we used a boolean operator implemented in the Carve constructive solid geometry
library (CSG) [1], since it is the main freely available CSG library. The boolean operators are
implemented using the concept of Nef polyhedra [19,33].

During this research, we tried several methods of approaching the overlap problem, which in
the end were not sufficient. One of the promising ones was using a shrink-based method. The
method needs an algorithm that uniformly shrinks an object, so unfortunately a simple Laplacian
smoothing applied iteratively does not suffice, since it grows the surface in some areas [15]. A
seemingly promising way of uniform shrinking was a skeleton based extraction method, based on the
work of Au et al. [7]. The method contracts the mesh geometry into a zero-volume skeletal shape
by applying implicit Laplacian smoothing with global positional constraints. The contracted mesh
is then converted into a 1D curve-skeleton by removing all the collapsed faces while preserving the
shape of the contracted mesh and the original topology. The application of the algorithm for this
study is described in Section 5.2.2.

2.3.5 CGAL

For the FE simulation, we need to provide a 3D volume mesh to the FEBio software. To generate the
volume meshes from the surface meshes, we use the 3D mesh generation algorithm from the CGAL
library [2, 36,40].

The mesh generation algorithm allow generating meshes of configurable volume density and
surface density. Therefore, the vertex indices specified by the segmentation results need to be saved
in a way invariant to vertex ordering. We do this by generating attachment and tendon area’s by
applying the convex hull algorithm from CGAL [20].

2.4 Research objectives

The main contributions of this study to the field of musculoskeletal and FE simulations is the auto-
mated pipeline, that resolves data inaccuracies, such as muscle overlaps and self-intersecting
muscles from an MRI dataset. This is achieved by applying and adapting several techniques
from the field of geometric algorithms, such as surface mesh smoothing and a Boolean difference
method. This work also contributes by providing a connection between the musculoskeletal

18 CHAPTER 2. RELATED WORK

motion and the FE simulation, and thereby creating a unified platform for neuromuscular
and finite element simulations.

CHAPTER 3

Pipeline overview

In this chapter we will give an overview of the automated pipeline developed to generate the FE
simulation. Figure 3.1 shows the overview of the pipeline. If we look at the schematic pipeline, it
takes a human subject as ‘input’. The subject is recorded in two ways: a scan is made in the MRI
scanner and a motion is recorded using optical markers.

The marker motion recorded by the motion capture equipment is imported into a musculoskeletal
simulation platform, in our case OpenSim. The platform has a musculoskeletal model that is scaled
to the subject using positions of anatomical landmarks (markers). The motion of the markers
is converted to an angle based scaled musculoskeletal model by applying inverse kinematics (See
Section 6.1).

The MRI scan is a volume scan of the legs of the subject. The leg is segmented using the algorithm
of Schmid and Magnenat-Thalmann [41]. The segmentation algorithm produces closed surfaces of
muscles and bones and the attachment sites where the muscle connects to the bones.

The closed surfaces from the segmentation result cannot be converted directly to volume meshes.
The segmented data contains many segmentation artifacts and noise (See Sections 4.3, 4.6 and 4.7).
The data first has to be cleaned before it can be given to the mesh generator. The most important
step here is the resolving of overlaps between meshes.

The next step is to generate the volume meshes from the cleaned-up surfaces. The volume
meshes, together with the motion from the musculoskeletal model are combined into a finite element
simulation. The motion from the musculoskeletal model is converted into the coordinate frame of
the MRI dataset (See Section 6.1.2). Finally, all generated volume meshes, material specifications,
motion data and attachment specifications are combined into one finite element setup file, that can be
read by the finite element solver which produces the final output of the pipeline (See Section 6.2.2).

19

20 CHAPTER 3. PIPELINE OVERVIEW

MRI Acquisition

Segmentation

Surface overlap resolving

Volume mesh generation

Motion capture

Motion analysis in OpenSim

Experiment

SubjectSubject

Figure 3.1: Overview of the pipeline.

CHAPTER 4

MRI to volume mesh

In this chapter we will describe the full process of converting an MRI scan to the volume mesh
needed for the final finite element mesh setup. First we will describe how the segmentation algorithm
produces the surface data we are using in Section 4.1. In Section 4.2 we give an overview of the
different stages the segmented MRI data traverses in the rest of the pipeline to obtain the volume
meshes.

4.1 MRI segmentation

A subject is scanned in a lying resting pose with an MRI scanner (1.5T Philips Medical Systems). In
close collaboration with radiologists, a protocol for the imaging of soft and bony tissues was defined:
Axial 2D T1 Turbo Spin Echo, TR/TE = 578/18ms, FOV/FA = 40cm/90◦, matrix/resolution =
512x512/0.78x0.78mm, thickness: 2mm(near joints) to 10mm (long bones).

The resulting dataset is segmented into surfaces meshes using a template method that uses a
minimal energy optimization to fit a template muscle or bone to the acquired MRI data [41]. This
dataset of surface meshes will be the input to our pipeline. The segmentation algorithm is based on
discrete deformable models. It uses a force-based optimization technique where each goal is defined
as a force. It uses forces on the medial axis (MA), where the forces consist of shape and smoothing
constraints, non-penetration constraints and external forces of intensity profiles. Shape priors in the
form of a principal component analysis (PCA) of global shape variations and a Markov random field
(MRF) of local deformations impose additional spatial restrictions in shape evolution. Unfortunately,
since the method is dependent on forces, balancing the weights of the non-penetration constraints
and the other constraints can be a difficult if not impossible task. Therefore, the resulting surfaces
suffer from intersections between surfaces and also self-intersections. Since the density of the vertices
of the shape priors used by the method are uniformly spread, the resulting shapes have nearly the
same property. The segmentation algorithm also includes tendon and attachment specification and
are specified by vertex indices in the resulting muscle meshes.

4.1.1 Bones and muscles

The segmentation algorithm produces surfaces of bones and muscles. Surfaces are represented as
a list of vertices V = {vi : 1 ≤ i ≤ nV } and a list of faces F = {fk : 1 ≤ k ≤ nF }, each face
fk = (ik1 , . . . , i

k
nfk

) consisting of a sequence of indices in the vertex list. A surface S = {V, F} is a

pair of a vertex list combined with a face list. All surfaces are consisting of only triangles, so each
face always has three vertices fk = (ik1 , i

k
2 , i

k
3).

The segmentation result generally puts each muscle and bone in a separate file. The tibia and
fibula bones are put together into one file. The gastrocnemius muscle has two heads and is divided
into two surfaces in the same file.

4.1.2 Attachments and tendons

An attachment site A is defined in the segmentation result as indices in a corresponding vertex list
V in the order they are defined in the muscle files.

A = {i1, . . . , inA
} (4.1)

Because the stages in the pipeline change the amount and ordering of the vertices in the datafiles,
we process the attachment sites to be index invariant by defining the attachment areas by geometry.
This is explained in more detail in Section 4.9. The tendons are defined in the same way as the
attachments, and for those we also need to convert the indices to a geometric representation.

21

22 CHAPTER 4. MRI TO VOLUME MESH

4.2 Stage overview

The process of transforming the segmented MRI data to the volume mesh needed for the FE simu-
lation is divided into several stages. Figure 4.1 on page 23 shows an overview of all the stages. The
following sections explain each stage in detail. We first start by smoothing the raw surface data to
remove segmentation artifacts (Section 4.3). This does not change the mesh topology, so we can use
the data to feed the convex hull generation step. The next step is to remove the unwanted compo-
nents from each surface (Section 4.4), which will remove objects from a surface file, so the vertex
order in the files can be changed. Next, new tendons are generated for muscles that are missing
tendons (Section 4.5), which adds new geometry to the surface meshes. Then, the self-intersecting
parts from the surfaces are removed (Section 4.6). Surfaces that overlap will be separated next (Sec-
tion 4.7). Then the volume meshes are generated and a small cleanup step is executed (Section 4.8).
Finally, the attachments and tendon specifications are transformed into convex hulls and finally to
indices pointing to the volume mesh data (Section 4.9).

4.3 Smoothing

The first stage of the algorithm is a smoothing procedure to remove segmentation artifacts. Fig-
ure 4.2, Left shows the noise that can result from the segmentation step, as explained in Section 4.1.
We implemented a common smoothing technique that does not introduce shrinking [43]. Section 2.3.1
describes the algorithm in detail.

The algorithm is a low pass filter, with three parameters λ, µ and the iteration count N . The
low pass filter properties are the pass-band frequency kPB , the pass-band ripple δPB , the stop-band
frequency kSB , and the stop band ripple δSB . The parameters are related to the low pass filter
properties as follows:

λ <
1

kSB
(4.2)

1

λ
+

1

µ
= kPB (4.3)[

(λ− µ)2/(−4λµ)
]N

< 1 + δPB (4.4)

[(1− λkSB)(1− µkSB)]
N

< δSB (4.5)

The surfaces in our dataset are smoothed with these parameters: a λ = 0.33, µ = −0.331 and
N = 1000. Figure 4.2 shows the result of the operation on the gastrocnemius muscle using these
parameters.

4.4 Removing unwanted components

Some muscles in the segmentation result dataset contain tendon geometries for tendons. In general
they are part of the muscle surface itself, but in some cases, they are defined as a separate surface. In
Figure 4.3, we can see the different ways of representing tendons. The tendons specified as separate
objects unfortunately do not have a corresponding attachment description. Therefore, we remove
the tendon from the muscle in these cases. Because these tendons are important for the workings of
the muscle, an alternative tendon structure can be generated, as is explained in Section 4.5.

If a tendon is separately specified, it is still defined in the same datafile, sharing the same vertex
and face lists S = {V, F} (as explained in Section 4.3). The connectivity of the geometry is defined
by the faces. From the faces, we can derive a set of edges E, which consist of all the pairs of vertices
that occur in the same face.

E = {(i1, i2) : fk ∈ F, i1 ∈ fk, i2 ∈ fk} (4.6)

We separate the different objects in a datafile by applying a union-find data structure. For each
vertex vi a we create a set in the union-find data structure using its index as the set-id. For each
edge, we find the two sets they belong to, and perform a union operation on the two sets. After we
add all edges to the union-find datastructure, we can use a find operation to get the set-id that each
vertex belongs to.

4.4. REMOVING UNWANTED COMPONENTS 23

MRI to Volume mesh

Segmentation result

Output

Surfaces

Attachment and tendon
indices

Smoothing

Self-intersect removal

Surface overlap resolving

Volume mesh generation

Volume meshes

Volume mesh cleanup

Attachment & Tendon convex
hull generation

Attachment and tendon
indices

Smoothed surfaces

Attachment & Tendon
surfaces

Attachment & Tendon volume
mesh indices generation

Remove unwanted components

Generate missing tendons

Figure 4.1: Overview of the stages within from MRI segmentation to volume mesh output.

24 CHAPTER 4. MRI TO VOLUME MESH

Figure 4.2: Smoothing results. Left is before and right is after the smoothing operation.

Figure 4.3: Left: The biceps femoris has its tendon included in the closed surface. Right: The soleus
and achilles tendon are two separate closed surfaces

4.5. GENERATING MISSING TENDONS 25

Figure 4.4: The gastrocnemius muscle is missing its tendons that would connect it to the calcaneus.

The remaining sets are each given a sequence number ordered by their set-id, for example: if
the two sets remaining are 489 and 132, they receive sequence numbers 1 and 0 respectively. In the
configuration of the pipeline, the muscles can be given a sequence number indicating which object
to retain. We delete any vertices and reliant faces from these muscles that do not correspond to this
set.

4.5 Generating missing tendons

For some muscles, the tendons are not defined and for other muscles the tendons are defined, but
their attachment to the muscle is not (see also Section 4.4). Typical muscles missing tendons are the
gastrocnemius muscle and the soleus muscle, which are attached to the femur, tibia or fibula at the
top of the muscle, and are missing their connection to the foot (see Figure 4.4). Since these muscles
are valuable for a simulation of the knee, we developed an algorithm that can automatically edit the
surface mesh to incorporate a tendon structure, including an attachment and tendon specification
expected further along in the pipeline.

The tendon generator gets a list of muscles that do not have tendons. For these muscles, the
‘bottom’ part of the muscle is detected, and is extruded toward the foot. In this case the ‘bot-
tom’ direction is the negative direction along the superior-inferior axis, which in our dataset is the
in −z direction. This direction is based on the lying position of the scanned subject, where the
subject superior-inferior axis is aligned with the −z axis. It should be adapted in other scanning
configurations, for example by detecting the principal axis of the tibia bone.

As a first step of the algorithm, the z-value vzfootmax
of the top vertex of the foot Sfoot is

determined.

vzmax > vzi , vi ∈ V

For each muscle Smuscle the faces on the bottom part are recursively traversed, starting with the faces
connected to the vertex vzmusclemin

with the lowest z-value, creating a set Fbottom of faces belonging
to the bottom part of the muscle. The set Fbottom is defined as follows:

26 CHAPTER 4. MRI TO VOLUME MESH

Figure 4.5: Left: The soleus muscle without tendons connecting to the foot. Right: The soleus
muscle with an attachment to the foot generated automatically.

Fbottom0
= {fk : vzmin ∈ fk} (4.7)

Fbottomt+1 = Fbottomt ∪
{
fk : fafk ∩ Fbottomt 6= ∅, angle(fk) < 60

}
(4.8)

angle(fk) =
cos−1(fnk · −~z)

180π
(4.9)

(4.10)

Where fafk is the set of faces adjacent to fk, angle(fk) the function providing the angle between
a face and the xy-plane, fnk is the face-normal of face fk and iterations of Fbottom are denoted
as Fbottom#

. Summarized, we collect the set Fbottom of adjacent faces that have an angle with the
xy-plane lower than 60 degrees.

After determining the faces that comprise the bottom of the muscle, we start the extrusion. For
each face fk ∈ Fbottom, we set the z-value of each of its vertices to v′zi = vzi + (vzfootmax

− vzmusclemin
).

Then we determine the edges Eborder on the border of Fbottom.
The vertices in the border edge set Eborder are duplicated and are set to their original position.

The gap between the original border and the duplicated border is filled with regular spaced vertices
and corresponding faces Fgap. All the faces from Fbottom and the newly added faces Fgap are combined
into a new set Ftendon = Fbottom ∪Fgap, and are together locally smoothed according to the method
described in Section 4.3. In Figure 4.5 it is shown how the newly generated ‘tendon’ for the soleus
muscle compares to the version without tendon tissue.

The newly generated piece of muscle is also saved as being tendon material by immediately
generating a tendon convex hull for the new vertices, as described in Section 4.9.

4.6 Resolve self-intersections

The segmented MRI dataset contains some artifacts from the segmentation process, among which
self-intersecting objects (see Figure 2.1, Right). We chose an algorithm from Jung, Shin and Choi [24],
who developed an algorithm to clean up raw mesh-offsets and we use it here to remove general self-
intersections. In Section 4.7 we apply the same method to remove overlaps between two surfaces.
Section 2.3.3 explains the algorithm of Jung in detail, and in the following subsection we will describe
the adaptations we made to the algorithm of Jung to fit it to our own purposes.

4.6.1 Remove degenerate triangles

As in the algorithm description in Section 2.3.3, we remove faces that have edges smaller that a
predefined εe, or reconfigure faces that have angles smaller than εα, as can be seen in Figure 4.6.
We check all faces in each surface for these two properties and solve them accordingly. For faces
where an edge ep = (vi, vj) is smaller than εe, we collapse that edge by setting vi = (vi + vj)/2 and
removing vj . Then we update the faces containing vj to refer to vi. After applying this operation a

4.6. RESOLVE SELF-INTERSECTIONS 27

<εe <εa

Figure 4.6: Left: Degenerate triangle having an edge smaller than εe. Right: Degenerate triangle
having an angle smaller than εα.

vj

vi

vh

Figure 4.7: Two triangles sharing the same vertices in opposite order. One triangle defined as
{vi, vj , vh} and the other {vh, vj , vi}.

number of times, the geometry might contain some new topologic problems. The surface can contain
2 triangles that are each others opposites as can be seen in Figure 4.7. We detect these faces and
remove them, which is a valid operation, since it is a part of the surface that defines no volume.

For a triangle fk that has an angle smaller than εα, we do not remove any edges, but we change
its configuration. First we determine the longest edge eu = (vi, vj), and find the triangle fm sharing
that edge. We then have fk = {vh, vi, vj} and fm = {vg, vj , vi}. We now swap the edge eu, such
that fk = {vh, vi, vg} and fm = {vg, vj , vh}, as can be seen in Figure 4.6, Right.

4.6.2 Finding a seed triangle

Because the method originally was developed for raw offset triangular meshes, selecting a seed
triangle was easily determined by calculating the convex hull V C ⊂ V , and picking any triangle
f ∈ F which has at least of vertex vi ∈ V C. In our case however, triangles taking part in the convex
hull can also be invalid, as is the case in the vastus intermedius muscle seen in Figure 4.7 on page 27.
For this reason, we add an additional constraint to the seed triangle selection.

First, we calculate the center of mass of the vertices of the surface, by a simple averaging of the
vertex positions.

pcom =

∑
vi∈V vi

|V |
(4.11)

Since the surface meshes in this work are of approximately uniform density (see Section 4.1), we have
a rough estimate of the center pcom of the object. We use this value to determine if a vertex-normal
vni of a vertex on the convex hull is face outward of the object or inward. The vertex normal is
based on the average face-normals of the faces surrounding vi:

vafi = {k : i ∈ fk}

vni =

∑
fk∈vaf

i
fnk

|vafi |
(4.12)

28 CHAPTER 4. MRI TO VOLUME MESH

Here vafi are the faces that contain vi. We then compose the following equation that gives a measure
of how much a vertex-normal is facing outward:

~u = (vi − pcom)

di = vni · ~u (4.13)

We calculate the dot product of the vector from the center of the object to the vertex vi with the
vertex normal vni. The value di scales from 1 to -1, where 1 means vni is pointing straightly outward
and -1 means vni is pointing exactly to the center pcom. We calculate this value for all vi ∈ V C,
and choose the vertex vopt with the highest d-value. From this vertex vopt, we pick a random face

fk ∈ vafopt to be the seed triangle.

4.7 Resolving overlaps

Another artifact resulting from the segmentation process is surfaces that intersect each other. We
have tried several methods to resolve this problem, which is explained in detail in Chapter 5. In
Section 5.3 we describe the method used in the final pipeline. The developed methods described in
Chapter 5 all have common components that we explain below.

Before substracting one surface from the other, we grow the surface to be substracted, Sy by
calculating a raw mesh offset. We do this by moving each vertex vi ∈ Vy in the direction of vni.
The reason for doing this is to prepare for rounding errors that might occur in the next stages of the
pipeline, such as the calculation of the volume mesh. These rounding errors might cause the final
simulation setup file to have slight intersections between objects, and so the FE solver will not be
able to find a solution for the first simulation frame. The offset S′y is calculated as follows:

v′i = vi + λvni (4.14)

Where v′i are the vertices in the new V ′y , and λ is a growth factor.

4.7.1 Order of overlap removal

The order in which the substractions are executed determines the outcome of this stage. The object
that is processed first will most likely lose the most of its geometry, and will have no influence on
the other objects. The object that is processed last will not be influenced at all by other objects.

We chose the bones to always be processed last, since their segmentation quality is the highest.
The bones are relatively easy to distinguish on an MRI scan, therefore the segmentation result is the
most reliable. Since the bones are processed lastly, they will never be influenced by muscle objects.
The muscles and bones are among themselves are ordered in descending order of volume. This way
the surfaces that are smaller will be processed later, meaning they will be the last to be substracted
from. This is appropriate, since the impact of changes on small objects is usually higher. We use
a simple bounding box method to predetermine if a substraction should be executed to reduce the
number of substractions.

4.8 Generating volume meshes

Since the FE simulation is based on a volumetric representation of elements, we need to convert the
triangular surface representation of our objects to a tethrahedral volume representation.

We use the algorithm provided by the CGAL library for this step [2, 36, 40]. This library allows
us to parametrize the output of our mesh, such as the density of nodes inside the mesh, and the
density of surface nodes. These are important, as the performance of the final simulation is largely
dependent on the number of elements the model consists of. The parameters are the following:

• Facet angular bound: Controls the shape of surface facets. It is a lower bound for the angle
(in degree) of surface mesh facets. The termination of the meshing process is guaranteed if the
angular bound is at most 30 degrees.

• Facet radius bound: Controls the size (edge length) of surface facets. Each surface facet has
a surface Delaunay ball which is a ball circumscribing the surface facet and centered on the
surface patch. The radius bound is an upper bound on the radii of surface Delaunay balls.

4.9. CREATING ATTACHMENT AND TENDON CONVEX HULLS 29

Figure 4.8: Volume mesh of the rectus femoris muscle, before (left) and after (right) the mesh cleanup
step.

• Facet distance bound: Controls the approximation error of the surface. It is an upper bound for
the distance between the circumcenter of a surface facet and the center of a surface Delaunay
ball of this facet.

• Cell radius-edge bound: This parameter controls the shape of mesh cells. It is an upper bound
for the ratio between the circumradius of a mesh tetrahedron and its shortest edge.

• Cell radius bound: This parameter controls the size (edge length) of mesh cells. It is an upper
bound on the circumradii of the mesh tetrahedra.

The volume mesh produced by the algorithm is a set of vertices V = {vi : 1 ≤ i ≤ nV }, and a
set of tetrahedral cells C = {ck : 1 ≤ k ≤ nC}. Each cell ck = (ik1 , i

k
2 , i

k
3 , i

k
4) consists of a sequence

of exactly 4 indices in the vertex list, since the algorithm only produces tetrahedral cells. A volume
mesh M = {V,C} is a vertex list combined with a cell list.

We apply some small cleanup steps after the mesh generation to remove “loose” tetrahedra,
tetrahedra that have only one connection to the rest of the mesh, because these tetrahedra can lag
behind because of inertia and can produce oscillations because they do not move in sync with the rest
of the tissue they belong to. These oscillations can make the simulation unstable and can prevent
the solver of finding solutions. If caci represents the cell indices of cells surrounding cell ci, we can
define the loose cells as:

CL = {ci : |caci | ≤ 1} (4.15)

After selecting these elements, we remove them from the volume mesh. Figure 4.8 show the result
of the mesh cleanup process, before and after.

4.9 Creating attachment and tendon convex hulls

As explained in Section 4.1, the attachments and tendons are specified as indices in vertex lists
that are saved in surface mesh file. In the previous stages in the algorithm, these files are changed
topologically, and finally converted to volume meshes. To preserve the attachment data we convert
the index based representation to a geometric representation.

The first step is to convert the index based representation A = {i1, . . . , inA
} to a position based

representation AP = {p1, . . . , pnA
}. This is done simply by looking up the vertices in a compatible

vertex list V . We can use any vertex list, as long as it has the same vertex ordering as the original
vertex list from the segmentation algorithm. Therefore, we use the vertex list that results from the
smoothing stage as described in Section 4.3. From AP , we can calculate a convex hull, to obtain
the area where the attachment is active. The convex hull is a surface AS = {V, F} on which we can
apply standard surface operations. We use the convex hull algorithm from CGAL to implement this
conversion [20]. We grow the surface slightly using the raw offset operation (see Equation 4.14), to
account for possible rounding errors and save this as the attachment convex hull.

Figure 4.9 shows the resulting attachment and tendon regions. To calculate the tendon regions
from the specification we use the exact same process as for the attachments.

30 CHAPTER 4. MRI TO VOLUME MESH

Figure 4.9: Vastus lateralis muscle in red, the tendon convex hulls are purple, the attachment convex
hulls are yellow and the femur bone is transparent.

4.9.1 Converting hulls into volume mesh indices

As a final minor stage we convert the attachment and tendon regions into indices for in the volume
meshes M = {V,C}. We check for each vertex vi ∈ V if it lies inside the attachment surface AS. We
do this check using the Carve constructive solid geometry (CSG) library [1]. The new attachment
specification can be described as follows:

AM = {i : vi ∈ VM , inside(vi, AS)} (4.16)

Here, AM is the set of indices that point to vertices in the volume mesh M . This new rep-
resentation can be used directly in the final stages of the pipeline that generate the FEBio input
file.

CHAPTER 5

Resolving overlaps

During the project the most complex problem was the cleaning up of surface meshes, specifically,
the removal of overlaps between them. This is due to the nature of the segmentation algorithm as
explained in Section 4.1. As illustrated in Figure 5.1 these intersections can be quite severe. In
this chapter we explain the different methods we explored to solve the problem of resolving surface
overlaps.

5.1 Push-based method

Firstly, we developed a method where two objects would push each other away. The reason for
using a push-based method is that the topology of the object remains intact, and the attachment
and tendon information are transformed together with the surface (see also Section 4.9). For each
surface SA and SB we let surface SA push the surface SB away. The surfaces that have smaller
volumes have a higher priority, meaning they will be the last to be deformed, because their changes
will most likely have the most impact on the shape of the object. The bones will have the highest
priority since they have the best segmentation quality, because they are the easiest to distinguish on
the MRI volume (See also Section 4.7.1). Therefore, bones will never be pushed away by muscles.

First we create a copy of SB , S′B , and apply an iterative smoothing algorithm on it. The
smoothing algorithm works as follows: for each vertex vi ∈ S′B , we take the set of vertices vavi that
share an edge with vi, and set v′i as the average of vavi ∪{vi}. We found that applying this smoothing
step 50 times gives the desired result. Figure 5.2 shows the smoothed version S′B which illustrates
that the smoothed surface represents the general trend that the surface has.

Because S′B follows the general trend of the surface, we can use this information to determine
the direction uBi that a vertex vi should move if it is pushed away by SA.

This direction uBi is determined as follows:

uBi = (−vn′i/2) +

{
−(vi − v′i)/2 if (vi − v′i) · n ≥ 0

(vi − v′i)/2 otherwise
(5.1)

Here uBi is the direction we are going to move vertex vi if it lies inside SA, and vni is the vertex
normal at vi. As can be seen, uBi always points inwards into the surface, even if the smoothed v′i lies

Figure 5.1: Left: Close-up of the adductor magnus where it intersects with the pelvis bone surface.
Right: Same intersection as seen from the ‘inside’ of the adductor magnus muscle geometry.

31

32 CHAPTER 5. RESOLVING OVERLAPS

Figure 5.2: Detail of the femur, yellow being the smoothed variant of the green original.

Figure 5.3: Left: Adductor magnus muscle before overlap has been resolved. Right: Adductor
magnus after being pushed away by the pelvis bone.

outside. This is enforced by checking if the vertex normal vni is pointing in the opposite direction
of vi − v′i by using the dot product. We combine this vector with the inward normal vn′i at v′i.

For each vertex vi ∈ SB we test if it lies inside the volume SA. We do this check using the Carve
constructive solid geometry (CSG) library [1]. If it lies inside we move the vertex in the direction of
uBi , combined with the average vertex normal of the vertices of SA close to vi. This lookup is done
using a kd-tree, for which the implementation from the CGAL library is used [2,8]. We take the 10
closest vertices of SA, take the vertex normals of those and average them. This gives us a second
pushing direction vector for vi which we will refer to as uAi , since it is based on the geometry of
SA. We take a weighted average of these two pushing direction vectors to obtain the final direction:
ui = λAu

A
i + λBu

B
i . This vector we feed to the pushing algorithm. We obtained the best results

using values of λA = 0.5 and λB = 0.5.

The pushing algorithm works as follows. The vertex is iteratively moved in the direction of ui.
Before each step, we save the position of vi to a variable vinsidei . When vi is moved outside of SA, this
position is saved to the variable voutsidei . Then, using a binary search strategy, the best position for
vi is searched for between vinsidei and voutsidei by sampling the position at vi ← (vinsidei +voutsidei)/2.
If this new vi is inside, vinsidei is updated to the value of vi and otherwise voutsidei is updated. The
search is done when the difference between two iterations is smaller than 0.01 cm (the segmented
MRI dataset coordinates are declared in cm). The result is shown in Figure 5.3, where the adductor
magnus can be seen before and after it has been pushed away.

Unfortunately, this method fails if a surface SA lies too far inside surface SB , because pushing
directions cannot be accurately determined anymore. Figure 5.4 shows an example of the resulting
artifacts after applying this algorithm on a muscle that overlaps too far inside a bone.

5.2. SHRINK-BASED METHOD 33

Figure 5.4: Detail of the sartorius muscle, that has been pushed away by the femur bone. At certain
vertices the push direction is not adequate and the vertex is pushed wrongly.

5.2 Shrink-based method

We also developed a method that can make two surfaces push each other away by both moving
vertices to a shrunk copy of the surface. For this method we need an algorithm that can give for a
surface S a shrunk version S′. Shrinking an object iteratively gives a sequence of shrunk surfaces
S1 . . . Sn. Similarly, each vertex vi ∈ V , has a sequence of shrunk positions v1i . . . v

n
i .

To solve a surface overlap between surface SA and surface SB , we first determine the set V IA of
vertices in VA that lie inside SB . For each vertex vi ∈ V IA we update the position to v1i . Then, we
iteratively execute the following operations:

1. Update V IA: remove the vertices that lie outside of SB .

2. For each vertex vi ∈ V IA, we set its position to vti , where t is the iteration number.

We can execute the same algorithm for surface SB simultaneously with SA. This way the surfaces
will push each other away, and one surface will not have priority over the other.

For this algorithm to work, the shrinking algorithm should produce a sequence of surfaces that:

1. Do not change the topology of the mesh.

2. Shrink smoothly, and in small steps.

3. Only shrink, and do not grow.

We examined a couple of possible shrinking algorithms, which we explain in the following sections.

5.2.1 Shrink by smoothing

Firstly, we used a shrinking algorithm based on standard Laplacian smoothing [43]. Each vertex is
moved in the average direction of its neighbors:

vt+1
i = vti + λ

∑
j∈vav

i
vtj − vti

|vavi |
(5.2)

34 CHAPTER 5. RESOLVING OVERLAPS

Figure 5.5: Iterations of the shrink by smoothing method of the vastus intermedius muscle. The
wireframe represents the original surface. Top-left: after 25 iterations. Top-right: after 75 iterations.
Bottom-left: after 125 iterations. Bottom-right: after 200 iterations.

Here λ is the scaling factor of the displacement done in each shrinking step. This method produces
smooth shrinking, and can be done in arbitrarily small steps. The only problem of this method is
that globally, the surface will shrink, but locally, the surface can expand. Specifically, concave parts
of the surface will expand, and convex parts will shrink. Figure 5.5 illustrates this in the vastus
intermedius muscle. The muscle expands in the concave part and if applied in the pushing method,
the resulting surface might become larger while having been pushed away, therefore this shrinking
algorithm is not sufficient. Figure 5.6 shows the results of the shrinking method applied in the
shrink-based pushing algorithm.

5.2.2 Shrink to skeleton

The second shrinking algorithm we developed moves the vertices of the surface to a pre-calculated
‘skeleton’, which represents the global minimal structure of an object. We determine this skeleton
using the method of Au et al. [7].

The algorithm takes a surface S = V, F and produces a curve-skeleton K = (U,E) with skeleton
nodes U and edges E, where U = {u1, u2, . . . , unU

} are the node positions. The algorithm also
produces a mapping coll(vi) = uk from vertices to skeletal nodes, that gives for each vertex vi the
node uk to which it was collapsed in the skeleton. For each node we calculate the average collapse
distance colld(uk) for all vertices of that node, and we set as root node uroot the node with the
highest colld(uk). When we have a root node determined, we can also set parent/children relations
for each node. Figure 5.7 shows the skeleton of the biceps femoris and illustrates which vertices
belong to the same skeletal node.

The shrinking algorithm we developed moves the vertices toward an attraction point on the
skeleton. Each vertex vi has a ‘current’ node curr(vi) = uk, that is initially set to coll(vi). Then
the attraction point is determined as follows:

1. If the parent(curr(vi)) = ∅, meaning the current node is the root, then the attraction point ai
is set to curr(vi).

5.2. SHRINK-BASED METHOD 35

Figure 5.6: Left: Satorius muscle after being pushed away by the femur bone, using the shrink based
algorithm using the smooth-shrink method. Right: Adductor magnus muscle pushed away by the
pelvis bone. Yellow mesh represents the pelvis bone, pink mesh the original muscle mesh.

Figure 5.7: Biceps femoris muscle with the ‘skeleton’ in white, the root of the skeleton is a larger
yellow dot. The vertices are classified based on the skeletal node they belong to, all vertices of the
same color belong to the same node.

36 CHAPTER 5. RESOLVING OVERLAPS

Figure 5.8: Iterations of the shrinking to skeleton method of the biceps femoris.

2. Otherwise, determine the projection parameter t of the projection of vi on the line segment
from curr(vi) to parent(curr(vi)). Equation 5.3 below gives the projection parameter.

3. If t ≥ 0, we set the current node curr(vi) of the vertex to its parent curr(vi)← parent(curr(vi)),
and go back to step 1.

4. The attraction point ai has two components. The first component a1i is set to the projection
v′i of vi on the line segment curr(vi) → parent(curr(vi)), and the purpose of this component
is to make the vertex move toward the skeleton.

5. The second component moves the vertex toward the root: a2i = parent(curr(vi))− curr(vi).

6. The final attraction point is then ai = a1i + 1
|a1i−vi|

a2i , where the influence of the parent direction

increases as the vertex moves closer to the skeleton.

projparam(lb, le, p) =

∥∥∥∥ (le − lb) · (p− lb)
le − lb

∥∥∥∥2 (5.3)

Figure 5.8 shows the results of the shrinking method described above. The smoothness of the
shrinking could be improved by a different strategy of moving toward the skeleton. Unfortunately,
the algorithm has a bigger defect: the algorithm produces for some muscles a skeleton that lies
outside of the surface shape, as seen in Figure 5.9, which is not tolerable for our application, since
the vertices can never go outside of the original shape.

5.3 Overlap resolving using boolean operators

Exact substractions of surfaces can be made using boolean operators. We used an existing imple-
mentation of boolean operators (Section 5.3.1) and also adapted the self-intersection removal method
(Section 5.3.2) to implement substraction. Figure 5.10 shows an example of a substraction of a bone
(femur) from a muscle (vastus medialis).

5.3.1 Carve

The final method we applied to resolve the overlaps was using boolean operators. We used a boolean
operator implemented in the Carve constructive solid geometry library (CSG) [1], since it is the
main freely available CSG library. It is being used in the popular 3D modeling software Blender [4].
It is able to perform boolean operations such as union, difference and substraction. We use the
substraction operator to resolve the surface overlaps. The library can take two polygon meshes Sx and
Sy and produces a mesh S′x of which the part intersecting with Sy is removed. The boolean operators

5.3. OVERLAP RESOLVING USING BOOLEAN OPERATORS 37

Figure 5.9: Vastus intermedius skeleton: the skeleton lies for the large part outside of the object.

are implemented using the concept of Nef polyhedra [19, 33]. Nef polyhedra in d-dimensional space
are the closure of half-spaces under boolean set operation. In consequence, they can represent non-
manifold situations, open and closed sets, mixed-dimensional complexes and they are closed under
all boolean and topological operations, such as complement and boundary.

5.3.2 Substraction by self-intersection removal

The self-intersection removal algorithm (see Section 4.6) can also be employed as a substraction
algorithm. The method obviously provides an intersection detection mechanism, but we can reuse
nearly all components.

The method is globally described as follows. If we have surface Sx and surface Sy, and we want
to calculate Sx − Sy. We merge the two surfaces into one datastructure Sz but we invert the face
normal directions of Sy. We then have one surface Sz, on which we can apply the self-intersect
removal algorithm with a seed triangle from Sx. The algorithm will detect the intersections between
the two surfaces, and will regard the part of Sy as a self intersecting part of Sx.

The method gives the same quality results as the Carve library, but is in some cases less stable
(when dealing with degenerate cases) and our implementation is less optimized than the Carve
implementation. Therefore we use the Carve library in the final pipeline. In rare when cases Carve
cannot find a correct solution we automatically fall back to the substraction by self-intersection
removal method. The Carve library fails to create a substraction result when one of the input
surfaces has one or more holes.

38 CHAPTER 5. RESOLVING OVERLAPS

Figure 5.10: The vastus medialis after the femur has been substracted. The femur is represented as
the transparent wireframe.

CHAPTER 6

Experiment

To test our method, we devised an experiment to evaluate the applicability and results of our method.
In this chapter we describe the data we use from the musculoskeletal simulation and how to convert
to be usable in the FE simulation (Section 6.1). Then we describe the implementation details of
building the FE setups, the software used in the process, and how we can inspect and evaluate the
experiment (Section 6.2). Finally, we show the individual components of the experiment we created
and its results (Section 6.3).

6.1 Musculoskeletal input

We use the motion from a musculoskeletal simulation to drive our final simulation. This way we
extend the musculoskeletal simulation with a FE simulation with which we can study muscle defor-
mations in detail, which is not possible in the musculoskeletal simulation. We use the motion and
the joint models from the musculoskeletal simulation in the FE simulation.

6.1.1 Musculoskeletal models

OpenSim is a freely available, open-source software system that lets users develop models of mus-
culoskeletal structures and create dynamic simulations of a wide variety of movements [14]. The
software can use inverse kinematics to generate a sequence of poses for a skeleton model from motion
capture data.

The movement of the joint can be defined in a large number of ways. The simplest model of
the knee joint is a single rotation about a stationary axis in the sagittal plane. But more complex
models exist, such as the model of Walker et al. [47], and Yamaguchi et al. [48]. These models have
already been implemented in OpenSim musculoskeletal models by Arnold et al. and Delp et al. [6,13]
respectively. For this experiment we used the model from Walker et al. In this knee-joint model,
the configuration is parametrized by the flexion-extension angle. Dependent on this angle are two
translational degrees of freedom, anterior-posterior and inferior-superior, specified by two natural
cubic splines. The knee-model also specifies a slight rotation around the other two axis, each defined
by their own natural cubic spline.

6.1.2 Coordinate system conversion

At the first stage of the pipeline, we record a motion of the same subject of which we took the MRI
scan and scale the OpenSim model accordingly. If we want to use the motion from the OpenSim
model, we need to convert the joint motion from the OpenSim definition to a transformation (rotation
and translation) of the bones in the finite element simulation.

The OpenSim model and the MRI data both contain a set of markers. They are located on specific
anatomical landmarks, as defined by Cappozzo et al. [12]. The OpenSim model uses markers on well
defined locations on the skin to track the subject, so these anatomical landmarks can be used to
orient the model. To pinpoint the exact same landmarks on the MRI dataset, we can either directly
scan the subject with markers filled with contrast agent or we can virtually locate the anatomical
features in the 3D segmented images. The markers in the dataset used in this project consist of
markers obtained using a mix of both methods.

Since the experiment we did for this research is constrained to the knee-joint, we will describe
the method for the knee joints here. As we scale the generic musculoskeletal model to our subject,
the joint description is also scaled. The IK algorithm of OpenSim will match the joint configurations
to our motion capture data. From this scaled model we calculate the joint configuration for each
time-frame of the motion, and transform this configuration to the coordinate system of the MRI

39

40 CHAPTER 6. EXPERIMENT

Figure 6.1: Markers used for the coordinate system conversion. Left in the OpenSim model, right in
our MRI dataset.

data. This is done by taking three common marker positions from the MRI dataset and from the
motion capture dataset and define coordinate systems between these markers. Between these two
coordinate systems we can easily specify a transformation. For the knee-joint conversion, the markers
we used are the GT (great trochanter), LFE (lateral femur epicondyle) and the MFE (medial femur
epicondyle), shown in Figure 6.1.

Since OpenSim represents its motion locally, we converted the motion to world space, including
the lower leg offset.

6.2 Implementation

This section describes the implementation of the pipeline used for the experiment that is described
in Section 6.3. We discuess the knee model used in OpenSim (Section 6.2.1), the specifics of using
the FEBio finite element solver (Section 6.2.2) and finally the parameters used for each algorithm in
the pipeline (Section 6.2.3).

6.2.1 OpenSim

As we said earlier, the OpenSim model used in this experiment is developed by Arnold et al. [6].
To obtain the motion from this model, we read the .osim file scaled to our subject, and we need a
corresponding .mot motion file. The .osim file describes how the joints behaviour is related to the
joint-coordinates such as knee or hip angles. Since the OpenSim API does not provide functionality
to extract joint configurations, we implemented the skeletal model of OpenSim that supports all the
functions that relate coordinates to joint rotations and translations. We implemented this part of
the pipeline in Java because of the native XML support, and the reflection capabilities that allowed
us to easily describe a XML-object mapping.

6.2.2 FEBio

The pipeline described in Chapter 4 produces a number of data units that have to be combined to
be ready to be used with a finite element solver. For this pipeline, we have used the FEBio software,
developed at the University of Utah [3]. As can be seen in Figure 6.2, the FEBio file consists of
several components. This part of the pipeline, from the segmented MRI data to the FEBio file was
written in C++, since many geometry processing libraries such as CGAL and Carve were designed
to be used with C++.

6.2. IMPLEMENTATION 41

FEBio file
MRI to volume mesh pipeline results

Elements

Materials / Rigid
bodies

Sliding interfaces

Fixed point constraint

Volume meshes

Attachment points

Load curves
OpenSim joint motion

extraction

Are attached to...

Are moved by...

Tendon points

Figure 6.2: Overview of the compilation of a FEBio setup file.

The FEBio file consists of an element list, material definitions, and set of constrains. The el-
ements in the FEBio file are the elements from the volume meshes from the MRI-to-volume mesh
pipeline. The bones in our simulation are represented by rigid bodies. This can be done because
bone deformation is only feasible with forces much greater than we are studying in our daily activity
trials. Because the bones are rigid bodies, FEBio allows us to change their position and orientation
during the simulation. The changes are defined using load-curves, one load-curve for each degree of
freedom, in total six degrees of freedom (3 rotations, 3 translations). These six degrees of freedom
are not all used in our simulation, but they can all be adapted if necessary. In the knee-model
of Arnold et al. [6], 5 degrees of freedom are used, 3 rotations and 2 translations. We divide the
bones into sets, one for each joint that is moved by a joint, and one for those that stay fixed. The
bones that move together are given the same rigid body material, and will all move according to the
appropriate load-curves.

Earlier in the pipeline (Section 4.9), the indices in the volume mesh of the attachments were
calculated. We attach these vertices to the appropriate bone by creating fixed point constraints.
These fixed points will move in the same way as the rigid body they are attached to. The attachment
location on the bone is therefore not relevant, because all points on the bone move the same way.

All the muscles are given the same material specification (as described in Section 6.3.1). The
tendon indices are used to identify elements that should get a tendon material assigned. If an element
has all vertices inside the tendon-index set, it will get the tendon material assigned.

The creators of FEBio also created the evaluation tool PostView to view the results of the
simulation. It can visualize a range of physical properties of the elements, such as displacement,
pressure and strain. We use this tool in our analyses for our experiment, therefore all images of
simulation results are made using this software.

6.2.3 Pipeline parameters

Not all algorithms in the pipeline can be used without configuration. In this section we describe all
parameters used in the pipeline. The smoothing algorithm (Section 4.3) has three parameters λ, µ
and N . The surfaces in our dataset are smoothed with these parameters: λ = 0.33, µ = −0.331 and
N = 1000 (iterations). The properties of the low-pass filter are the pass-band frequency kPB , the
pass-band ripple δPB , the stop-band frequency kSB , and the stop band ripple δSB . The parameters

42 CHAPTER 6. EXPERIMENT

Parameter name Muscle Bone

facet angular bound 30.0 30.0
facet radius bound 5.0 15.0
facet distance bound 0.5 0.75
cell radius-edge bound 1.25 4.0
cell radius bound 3 100

Table 6.1: CGAL Mesh generation parameters

Figure 6.3: The biceps femoris and semimembranosus muscles after being cut in the middle. The
elements on the inside of the muscles are visible.

are related to the low pass filter properties as follows:

λ <
1

kSB
(6.1)

1

λ
+

1

µ
= kPB (6.2)[

(λ− µ)2/(−4λµ)
]N

< 1 + δPB (6.3)

[(1− λkSB)(1− µkSB)]
N

< δSB (6.4)

In the tendon generation step (Section 4.5), we add regularly spaced vertices to fill the gap
between the end of the tendon and the start of the muscle. The space between these rows of vertices
is set to 2. The value can be absolute, since the dimensions of the MRI data are always in millimeters
(mm).

The degenerate triangle method (Section 4.6.1), needs two ε values, εe and εα, that indicate the
minimal edge length and minimal angle, respectively. In the experiment, we use εe = 0.5 cm and
εα = 0.01 cm.

The overlap resolve algorithm (Section 4.7) creates a raw-offset of the surface that will be sub-
stracted. The parameter λ indicating the distance of the offset is set to λ = 1.

The volume mesh generation step has several parameters determining the final density and ac-
curacy of the output mesh. Table 6.1 lists the parameters used on our dataset. For both muscle and
bone objects, we choose the same values for angular bound and radius-edge bound. This is because
these values do not influence the amount of elements created in the output mesh, but only influence
the runtime of the mesh generation. Facet angular bound is set to 30 because the CGAL algorithm
will guarantee a solution for this bound. The radius-edge bound is set to 1.25, because we want to
avoid unbalanced tetrahedra. For both the radius bounds, we choose for the muscle a lower value
since it will deform during the simulation and therefore needs a higher resolution. The bones are
not going to deform so the size of the tetrahedra inside of the bones is not important, hence the high
value. Figure 6.3 shows the result of these parameters of the generated volume meshes of bone and
muscle.

6.3. HAMSTRING STRETCH EXPERIMENT 43

Figure 6.4: The experimental set-up. (Image and description from [28]) Resistance (Nm) to stretch
was measured with the use of an isokinetic dynamometer during passive knee extension. Subjects
were seated with the trunk perpendicular to the seat and the thigh rested on a specially constructed
thigh pad (1) elevating it 0.3WI.45”(range) from horizontal, which disallowed complete knee exten-
sion and therefore placed tension primarily on the muscle-tendon unit rather than posterior capsular
constraints. Passive force (N) was detected by the load cell (4). The dynamometer and knee joint
axis were aligned and the torque about the knee joint was calculated by multiplying the measured
force by the lever arm distance. The distal thigh and pelvis were firmly secured with straps (2, 3).
Gross electrical activity of the human hamstring muscle group was measured with surface electrodes
placed midway between the gluteal fold and the knee joint (1). Custom-made amplifiers with a
frequency response of 20 Hz to 10 KHz and 1:1 pre-amplifiers were used for EMG signal sampling.
The force from the load cell, the velocity and angle of the lever arm (via the KinCom PC) and the
EMG signal were continuously and synchronously sampled via an A/D converter and stored on a
PC for subsequent analysis.

6.3 Hamstring stretch experiment

The pipeline can generate simulations that are driven by the motion of the bones. This means that
the muscles are not contracting actively. Therefore the muscles are moved only passively and we
should compare the results of our experiment with research on passive muscle motion. We recreate
the experiment described in [29] which is about the passive stretching of a knee joint. Figure 6.4 shows
the setup of the experiment. Each subject was positioned on a testing apparatus lying on his left side
with the pelvis and left thigh fixed at 90◦ against a padded anterior thigh block. The experiment
measures the passive force of the entire knee joint while being stretched. Since in our finite element
simulation result we cannot directly determine resistance we use the torque to stress conversion
described in [28] with which we can compare the output of our simulation. In the experiment, the
leg is stretched with constant angular velocity, as can be seen in Figure 6.5.

6.3.1 Materials

For all the bones in the experiment we use a rigid body material. Rigid bodies can be translated
and rotated during the simulation, therefore they can be used to execute the motion.

The muscle and tendon material we used is Neo-Hookean material, which is a standard material
in FEBio. We obtained the parameters for the Neo-Hookean materials from the work of Mau-
rice et al. [30] (from [11]). For the tendon we use a Young’s modulus of 1200 MPa and a Poisson’s
ratio of 0.4. The muscles have a Young’s modulus of 120 MPa and a Poisson’s ratio of 0.4.

6.3.2 Muscles

The muscles that we use in the simulation of the experiment are the biceps femoris and the semimem-
branosus which are two muscles that are part of the hamstring muscle group.

44 CHAPTER 6. EXPERIMENT

Figure 6.5: Graphic representation of a static stretch. In the dynamic phase the leg is passively
extended (0.0875 radis) to a pre-determined final position. The static phase is when the leg remains
stationary in the final position for 90 s. [28]

Figure 6.6: Motion of the experiment as visualized by OpenSim.

6.3.3 Motion

The motion in this experiment was not recorded since the exact motion of the leg is exactly defined
already. We generated a .mot file to be entered into the pipeline. Since the leg in our MRI dataset
is initially stretched, we first move the leg into the initial position. The hip is flexed 90◦ and at the
same time the knee is bent 90◦. Figure 6.6 shows three frames of the motion file loaded in OpenSim.
In the conversion between the OpenSim motion and the simulation motion we generate a transition
between the initial state of the bones and muscles in the segmented MRI data to the first frame of
the OpenSim motion. This is done because we do not know how the muscles should be deformed
in the initial state of the motion other than by simulating the deformation, therefore we first move
to the initial state. Figure 6.7 shows the transition motion of the bones from the initial state in the
segmented MRI dataset to the first frame of the OpenSim motion.

The final motion in the simulation starts after 6.1 seconds. The initial stage consists of 0.1 seconds
motionlessness, then 5 seconds in which the initial state is reached and finally 1 second motionlessness
again. After the initial stage the motion described by the hamstring stretch experiment is executed,
which takes 20 seconds after which 3 seconds of motionlessness occurs. The times of motionlessness
can be short since we are not using a dynamic solver, but a semi-static solver. Therefore dynamic
effects such as inertia are not considered.

6.3.4 Results

The results of the experiment consist of the deformation of the muscles and the stress values reported
by the finite element solver. The deformation can be seen in Figure 6.10, which starts at 5.2 seconds,
after the initial stage is completed. Figure 6.8 shows the development of the stress values over

6.3. HAMSTRING STRETCH EXPERIMENT 45

Figure 6.7: From the initial state of the bones in the segmented MRI data to the first frame of the
OpenSim motion.

time for 6 elements from the simulation. We measured the stress values on three locations for each
muscle: in the center and two on each superior-inferior side, just before the beginning of the tendon.
Figure 6.9 shows the stress of the entire model.

The solving the simulation with FEBio took 1 hour and 8 minutes on a computer with an Intel
Core2 Duo P7450 running at 2.13 GHz with 4 GB of RAM.

6.3.5 Analysis and comparison

In the visualization of the deformation of the muscles, we note that the inferior tendon of the biceps
femoris muscle is bent quite sharply. We see also that the inferior tendon of the semimembranosus
is at the end of the simulation pulled over the femur bone.

The stress development in the semimembranosus follows the expected pattern; the more the leg
is stretched, the more stress the muscle undergoes (See Figure 6.8). For the biceps femoris, we see
a completely different behavior of the stress variable. Each location on the muscle seems to show
a different development. Elements from the area of E19105 do not seem to be influenced a lot by
the stretching of the leg. They are however influenced by the flexion of the hip joint, since the
initial stress value has grown from 0 to 3.3 in the initial stage. The stress of element E35631 starts
relatively constant until the moment when the inferior tendon of the biceps femoris is no longer bent
and starts stretching. This means that the area around element E35631 was pushed together by the
bending of the tendon and is slowly de-pressurized by the unbending of the tendon. Element E42643
follows a similar development, but the moment the inferior tendon starts stretching it is itself pulled
apart by the stretch and therefore the stress increases. We cannot confirm whether this behavior is
realistic since we do not have data indicating otherwise.

In Figure 6.9 we see that the development of the average stress is comparable in shape to the
results of the live subject experiment from Magnusson [29]. Our graph is more detailed than the
one from Magnusson, which uses only 6 measurement points, explaining why the downward bump
around second 19 is not found in their results.

46 CHAPTER 6. EXPERIMENT

Figure 6.8: Bottom: Stress over time of elements in the simulation. Top: Location of the elements
in the simulation. The elements marked E19105, E35631 and E42643 belong to the biceps femoris
muscle and elements E66058, E64858 and E71957 belong to the semimembranosus muscle.

6.3. HAMSTRING STRETCH EXPERIMENT 47

Figure 6.9: Average stress of the entire model.

48 CHAPTER 6. EXPERIMENT

Figure 6.10: Visualization of the simulation results of the hamstring stretch experiment. From left
top right, top to bottom, the timestamps of each frame are: 5.2, 9.4, 13.6, 17.8, 22, 26

6.3. HAMSTRING STRETCH EXPERIMENT 49

Figure 6.11: Stress development in the experiment of Magnusson [29]: Mean±SEM. Stress-strain
(angle) curve in the common range for the normal (n=7) and tight (n=7) subjects. Significantly
different, ∗P < 0.05, ∗ ∗ P < 0.01. (Image from [28])

50 CHAPTER 6. EXPERIMENT

CHAPTER 7

Conclusion and future work

We have presented an automated pipeline that resolves data inaccuracies such as muscle overlaps and
self-intersecting muscles. We also created an automated conversion between a musculoskeletal mo-
tion and a finite element simulation thereby creating a unified platform for neuromuscular and finite
element simulation. The pipeline is able to extend the capabilities of the OpenSim musculoskeletal
platform by taking the subject-specific motion generated using the musculoskeletal simulation en-
vironment to drive a MRI-based finite element simulation that is generated from a subject-specific
segmented MRI-dataset. The pipeline allows the user not only to select the specific muscles to be
used in the simulation, but also the density of elements of the simulation and the material properties
of the muscles and tendons.

The pipeline’s main features are the cleanup of input data, making the pipeline robust. Segmen-
tation artifacts from low MRI image quality are smoothed out, self-intersections are removed and
inter-object overlaps are resolved. The pipeline also has the ability to semantically clean up the data,
by removing objects from specific datafiles and generating new tendon geometry in case of missing
tendons. The volume mesh generation is also performed automatically but should be configured to
the user’s need, depending on the user’s preferred detail and performance of the simulation. The
attachment sites and tendon areas are automatically added to the output of the pipeline: a FEBio
simulation file that has the volume data, material- and attachment specifications and the motion the
bones should make over time. The motion is extracted from the musculoskeletal simulation platform
OpenSim and is converted to the coordinate system of the finite element simulation.

Our experiment showed that the pipeline is applicable to real-world problems and gives results
comparable to actual experiments. Unfortunately, the pipeline can only generate simulations that
are passively driven, meaning that experiments where muscles are activated cannot be performed.
Future research could include the activation of muscles during the simulation. The musculoskeletal
simulation platform can produce muscle activations by analyzing the input motion, which could be
used to determine the activation times and intensities for each muscle in the simulation. The bones
can be either actively moved (as in the current pipeline), or passively moved by the muscles. In
the latter case one of the goals of the simulation would be to for the resulting motion to match the
original recorded motion as closely as possible.

In this work, we did not specifically focus on the material properties of the simulation. Our
materials are isotropic, while in reality muscle and tendon materials do not deform uniformly. Ma-
terials which support fiber directions have been developed, but need a significantly more elaborate
configuration. Together with muscle activation these materials would increase the accuracy of the
simulation greatly. The disadvantage is of course the increase in parameters, and most likely the
manual configuration of fiber directions for each muscle.

Future work should also focus on applying the pipeline on a dataset of higher quality. Higher
resolution of MRI data with less noise can be obtained by using a scanner with a stronger magnetic
field. The resulting segmentation would have less artifacts and the resulting simulation would be
more accurate. Also, a future research could create dynamic MR images of a leg in motion, which
could be compared to the results of the FE simulation performing the same motion. This way, the
deformation of the muscles in the FE simulation can be compared to a real world example, which
would validate the deformation of the muscles, thereby confirming or invalidating the parameters of
the simulation. This would serve fine tuning process of the parameters of the materials.

Our pipeline provides a connection from musculoskeletal simulation to finite element simulation.
Future research could also create a reverse connection, by visualizing the FE results in, for example,
OpenSim such as done by Pronost et al. [38].

51

52 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[1] Carve, constructive solid geometry library, July 2010. http://carve-csg.com.

[2] Cgal, Computational Geometry Algorithms Library, July 2010. http://www.cgal.org.

[3] FEBio, Finite Elements for Biomechanics, July 2010. http://mrl.sci.utah.edu/software.php.

[4] Blender, The Blender Foundation, July 2011. http://www.blender.org.

[5] U.S. National Library of Medicine. The visible human project, June 2011.
http://www.nlm.nih.gov/research/visible/.

[6] Edith M. Arnold, Samuel R. Ward, Richard L. Lieber, and Scott L. Delp. A model of the lower
limb for analysis of human movement. Ann Biomed Eng, December 2009.

[7] O.K.C. Au, C.L. Tai, H.K. Chu, D. Cohen-Or, and T.Y. Lee. Skeleton extraction by mesh
contraction. In ACM SIGGRAPH 2008 papers, pages 1–10. ACM, 2008.

[8] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18(9):509–517, 1975.

[9] S.S. Blemker and S.L. Delp. Three-dimensional representation of complex muscle architectures
and geometries. Annals of Biomedical Engineering, 33(5):661–673, 2005.

[10] S.S. Blemker and S.L. Delp. Rectus femoris and vastus intermedius fiber excursions predicted
by three-dimensional muscle models. Journal of biomechanics, 39(8):1383–1391, 2006.

[11] J.A. Buckwalter, T.A. Einhorn, S.R. Simon, and American Academy of Orthopaedic Surgeons.
Orthopaedic basic science: biology and biomechanics of the musculoskeletal system. American
Academy of Orthopaedic Surgeons, 2000.

[12] A Cappozzo, F Catani, U Della Croce, and A Leardini. Position and orientation in space of
bones during movement: anatomical frame definition and determination. Clinical Biomechanics,
10(4):171 – 178, 1995.

[13] S. L. Delp, J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive
graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE
Trans Biomed Eng, 37(8):757–767, August 1990.

[14] S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, and
D.G. Thelen. Opensim: Open-source software to create and analyze dynamic simulations of
movement. Biomedical Engineering, IEEE Transactions on, 54(11):1940 –1950, November 2007.

[15] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr. Implicit fairing of irregular meshes using
diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, pages 317–324. ACM Press/Addison-Wesley Publishing Co., 1999.

[16] F. Dong, G.J. Clapworthy, M.A. Krokos, and J. Yao. An anatomy-based approach to human
muscle modeling and deformation. IEEE Trans. Vis. Comput. Graph., 8(2):154–17, 2002.

[17] AWJ Gielen, CWJ Oomens, PHM Bovendeerd, T. Arts, and JD Janssen. A finite element ap-
proach for skeletal muscle using a distributed moment model of contraction. Computer Methods
in Biomechanics and Biomedical Engineering, 3(3):231–244, 2000.

[18] B. Gilles, L. Moccozet, and N. Magnenat-Thalmann. Anatomical modelling of the musculoskele-
tal system from mri. Medical Image Computing and Computer-Assisted Intervention–MICCAI
2006, pages 289–296, 2006.

53

54 BIBLIOGRAPHY

[19] P. Hachenberger and L. Kettner. Boolean operations on 3d selective nef complexes: Optimized
implementation and experiments. In Proceedings of the 2005 ACM symposium on Solid and
physical modeling, pages 163–174. ACM, 2005.

[20] Susan Hert and Stefan Schirra. 3D convex hulls. In CGAL Editorial Board, editor, CGAL User
and Reference Manual. 3.5 edition, 2009.

[21] H. Hoppe. Progressive meshes. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 99–108. ACM, 1996.

[22] T.R. Jenkyn, B. Koopman, P. Huijing, R.L. Lieber, and K.R. Kaufman. Finite element model
of intramuscular pressure during isometric contraction of skeletal muscle. Physics in medicine
and biology, 47:4043, 2002.

[23] T. Johansson, P. Meier, and R. Blickhan. A finite-element model for the mechanical analysis of
skeletal muscles. Journal of theoretical biology, 206(1):131–149, 2000.

[24] W. Jung, H. Shin, and B.K. Choi. Self-intersection removal in triangular mesh offsetting.
Computer-Aided Design and Applications, 1(1-4):477–484, 2004.

[25] M. Kojic, S. Mijailovic, and N. Zdravkovic. Modelling of muscle behaviour by the finite ele-
ment method using hill’s three-element model. International journal for numerical methods in
engineering, 43(5):941–953, 1998.

[26] M. Q. Liu, F. C. Anderson, M. G. Pandy, and S. L. Delp. Muscles that support the body also
modulate forward progression during walking. J Biomech, 39:2623–2630, 2006.

[27] S.A. Maas, B.J. Ellis, D.S. Rawlins, and J.A. Weiss. A comparison of febio, abaqus, and nike3d
results for a suite of verification problems. 2009.

[28] S. P. Magnusson. Passive properties of human skeletal muscle during stretch maneuvers. A
review. Scand J Med Sci Sports, 8:65–77, Apr 1998.

[29] SP Magnusson, E.B. Simonsen, P. Aagaard, J. Boesen, F. Johannsen, and M. Kjaer. Determi-
nants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, emg and stretch
tolerance. Scandinavian journal of medicine & science in sports, 7(4):195–202, 1997.

[30] Xavier Maurice, Anders Sandholm, Nicolas Pronost, Ronan Boulic, and Daniel Thalmann. A
subject-specific software solution for the modeling and the visualization of muscles deformations.
Visual Computer, 25:835–842, 2009.

[31] M.Damsgaard, J.Rasmussen, S.T.Christensen, E.Surma, and M. de Zee. Analysis of muscu-
loskeletal systems in the anybody modeling system. Simul. Model. Pract. Theory, 14:1100–1111,
2006.

[32] T. Möller. A fast triangle-triangle intersection test. Journal of graphics tools, 2(2):25–30, 1997.

[33] W. Nef. Beiträge zur Theorie der Polyeder: mit Anwendungen in der Computergraphik, vol-
ume 1. Lang, 1978.

[34] R. R. Neptune, S. A. Kautz, and F. E. Zajac. Contributions of the individual ankle plantar
flexors to support, forward progression and swing initiation during walking. J Biomech, 34:1387–
1398, Nov 2001.

[35] S. Osher and R.P. Fedkiw. Level set methods and dynamic implicit surfaces, volume 153.
Springer Verlag, 2003.

[36] S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes bounded by smooth surfaces. In
Proceedings of the 14th International Meshing Roundtable, pages 203–219. Springer, 2005.

[37] S. J. Piazza and S. L. Delp. Three-dimensional dynamic simulation of total knee replacement
motion during a step-up task. J Biomech Eng, 123:599–606, Dec 2001.

[38] Nicolas Pronost, Anders Sandholm, and Daniel Thalmann. A visualization framework for the
analysis of neuromuscular simulations. Vis. Comput., 27:109–119, February 2011.

BIBLIOGRAPHY 55

[39] C. C. Raasch, F. E. Zajac, B. Ma, and W. S. Levine. Muscle coordination of maximum-speed
pedaling. J Biomech, 30:595–602, Jun 1997.

[40] Laurent Rineau, Stphane Tayeb, and Mariette Yvinec. 3D mesh generation. In CGAL Editorial
Board, editor, CGAL User and Reference Manual. 3.5 edition, 2009.

[41] J. Schmid and N. Magnenat-Thalmann. MRI Bone Segmentation using Deformable Models and
Shape Priors. In D. Metaxas, L. Axel, G. Szekely, and G. Fichtinger, editors, MICCAI, volume
LNCS 5241, pages 119–126. Springer-Verlag Berlin Heidelberg, September 2008.

[42] J.A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings
of the National Academy of Sciences of the United States of America, 93(4):1591, 1996.

[43] G. Taubin. Curve and surface smoothing without shrinkage. In Computer Vision, 1995. Pro-
ceedings., Fifth International Conference on, pages 852–857. IEEE, 1995.

[44] G. Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, pages 351–358. ACM, 1995.

[45] J. Teran, E. Sifakis, S.S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw. Creating and
simulating skeletal muscle from the visible human data set. IEEE Trans. Vis. Comput. Graph.,
11(3):317–328, 2005.

[46] D. G. Thelen, E. S. Chumanov, M. A. Sherry, and B. C. Heiderscheit. Neuromusculoskeletal
models provide insights into the mechanisms and rehabilitation of hamstring strains. Exerc
Sport Sci Rev, 34:135–141, Jul 2006.

[47] P.S. Walker, J.S. Rovick, and D.D. Robertson. The effects of knee brace hinge design and
placement on joint mechanics. Journal of Biomechanics, 21(11):965 – 967, 969–974, 1988.

[48] Gary T. Yamaguchi and Felix E. Zajac. A planar model of the knee joint to characterize the
knee extensor mechanism. Journal of Biomechanics, 22(1):1 – 10, 1989.

[49] N.H. Yang, P.K. Canavan, H. Nayeb-Hashemi, B. Najafi, and A. Vaziri. Protocol for constructing
subject-specific biomechanical models of knee joint. Computer Methods in Biomechanics and
Biomedical Engineering, 2010.

[50] C.A. Yucesoy, B.H. Koopman, P.A. Huijing, and H.J. Grootenboer. Three-dimensional finite
element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh
model. Journal of biomechanics, 35(9):1253–1262, 2002.

[51] F. E. Zajac. Muscle and tendon: properties, models, scaling, and application to biomechanics
and motor control. Crit Rev Biomed Eng, 17:359–411, 1989.

[52] F. E. Zajac and M. E. Gordon. Determining muscle’s force and action in multi-articular move-
ment. Exerc Sport Sci Rev, 17:187–230, 1989.

56 BIBLIOGRAPHY

APPENDIX A

Software design

The pipeline has two data inputs from the same subject: the motion from OpenSim, and the seg-
mented MRI data. These two data sources are processed in a different software module. The
OpenSim musculoskeletal model is defined in a .osim file which is in XML format. This file is read
by a Java application which interprets the model and converts the joint-based local transformations
into world transformations in the coordinate system of the MRI data. It writes a file describing
the motion of the bones from the MRI data that can easily be read by the other software module.
The second and main software module consists of one application written in C++, which takes the
raw segmented MRI data and the output of the Java application and produces an FEBio file after
applying all the processing stages to the segmented MRI data.

A.1 Libraries

The software uses a number of libraries, of which the CGAL [2] and Carve [1] are the most important
ones. The other libraries for the Java software module are:

• JUnit4: For creating unit tests.

• POI 3.6: For reading Excel files for configuration.

For C++, the libraries used in the final pipeline are:

• Carve 1.0

• CGAL 3.5.1

• Boost 1.42.0: For the filesystem module for operations on file paths.

During the development of the shrink to skeleton method (See 5.2.2) we also used the Taucs
library for solving sparse linear systems of equations.

57

58 APPENDIX A. SOFTWARE DESIGN

APPENDIX B

Configuration files

The main pipeline is configurable through two configuration files, ‘setup.txt’ and ‘settings.txt’. The
former specifies the experiment setup; which bones and muscles are to be used in the simulation.
The latter specifies all other settings of the pipeline. Below we will list the configuration files of the
experiment described in Section 6.3. The comments in the files are preceded by a hash ‘#’ symbol.

B.1 File: setup.txt

This file specifies which bones and muscles to use in the simulation
syntax is: objectname [space] BONE/MUSCLE [space] RIGHT/LEFT

*** BONES ***
pelvis BONE RIGHT
femur BONE RIGHT
tibiafibula BONE RIGHT
patella BONE RIGHT
footsimplified BONE RIGHT

*** QUADRICEPS ***
#vastuslateralis MUSCLE RIGHT
#rectusfemoris MUSCLE RIGHT
#vastusmedialis MUSCLE RIGHT
#vastusintermedius MUSCLE RIGHT

*** HAMSTRINGS ***
bicepsfemoris MUSCLE RIGHT
semimembranosus MUSCLE RIGHT
#semitendinosus MUSCLE RIGHT
#gracilis MUSCLE RIGHT

*** HIP MUSCLES ***
#ilio_psoas MUSCLE RIGHT
#gluteusminimus MUSCLE RIGHT
#gluteusmedius MUSCLE RIGHT

*** CALF MUSCLES ***
#gastrocnemius MUSCLE RIGHT
#soleusachillestendon+0 MUSCLE RIGHT

B.2 File: settings.txt

WARNING: Only the objects specified in setup.txt are used in ANY of the operations.
WARNING: If run.tests is turned on, ONLY tests will be run, and no other programs.

NOTE: 1=true 0=false

paths.data = C:/dev/modgen10/Data

run settings, these programs are executed sequentially
run.clearcache.surface = 0 # clear cache of surfaces
run.clearcache.mesh = 0 # clear cache of meshes
run.generatemusclesetupfiles = 0 # generates a file femur_tibiafibula_muscles.txt, in

which all muscles are listed that are connected to both femur and tibia or fibula
run.createAttachmentIndex = 1
run.generateFootTendons = 0 # generates the tendons (in memory, not on disk), this

is used in combination with run.secondsetup. The muscle for which to generate are
specified in missingtendons.txt

59

60 APPENDIX B. CONFIGURATION FILES

stages
run.preprocess.smoothThemUp = 1
run.preprocess.createAttachmentConvexHulls = 1
run.preprocess.createTendonConvexHulls = 1
run.preprocess.removeUnwantedComponents = 1
run.preprocess.generateFootTendons = 1
run.preprocess.resolveSelfIntersections = 1
run.preprocess.substractAllFromAllSIR = 1
run.preprocess.generateMeshes = 1
run.preprocess.volumeMeshCleanup1 = 1
run.preprocess.createMeshAttachmentIndicesSets = 1
run.preprocess.createMeshTendonIndicesSets = 1

run.preprocess.calcvolumes = 0 # recalculates the file volumes.txt, which is a cache
of the volumes used to compare the sizes of objects

run.preprocess.meshsurfaces = 0 # regenerates the surfaces by first applying the CGAL
mesh algorithm and then taking the boundary. The new surfaces overwrite the surface
cache. Is ALWAYS turned off in the final version.

run.preprocess.resolveOverlaps = 0 # resolves the surface overlaps by pushing away. The
new surfaces overwrite the surface cache. (Parameters: fixoverlaps.growFactor,
preprocess.surfaces.usemeshsurfaces)

run.convertattachments = 0 # converts the attachment specification from index-
based specification to points in space

run.generateFootReplacement = 0 # generates the foot replacement (in memory, not on
disk), this is used in combination with run.secondsetup. This is always used, and
takes little time, so don’t bother turning it off.

run.secondsetup = 0 # generates the FEBio setup file (Parameters:
secondsetup.fixoverlaps, secondsetup.removeCgalRubbish, secondsetup.jointpath, run.
secondsetup.outputname)

run.stageBasedSetup = 1
run.startsimulation = 1 # runs the FEBio setup file specified in

stageBasedSetup.outputname

programs used to get some statistics to put in the paper
if any of these programs are activated, ONLY that one will be run, and nothing else
run.calculatePenetrationStats = 0 # generates a file penetrations.csv, which

calculates the amount of overlap all objects have with eachother
run.checkAllObjectsForValidity = 0 # tests for each object if point (0,0,0) is inside (

this should be false for all objects), if this is true, something is wrong with the
object, because the Carve library cannot create a correct intersection test
datastructure. Results saved in validity.csv

run.countMeshElements = 0 # generates mesh and surface statistics and saves to
meshsizes.csv (only objects in setup.txt)

secondsetup run settings
run.secondsetup.outputname = secondsetup_arnopush # name of the febio setup file (

without .feb), file will be placed in simulations directory
secondsetup.jointpath = jointpath3.txt # input file to load

jointmovements from. Relative to Data\JointPath

stagebased setup
stageBasedSetup.jointpath = jointpaint_prototype.txt

programs to execute some code tests (only useful when testing the code)
tests settings
run.tests = 0 # if this is 1, only tests will be run, and all

other programs specified above will be ignored
run.test.carve = 0
run.test.cubemesh = 0 # creates a cube mesh and does some mesh operations

on it
run.test.smoothing = 0 # tests smoothing algorithm
run.test.connectedcomponents = 0 # tests connected component class
run.test.takeTheseTwoFaces = 0 # takes two faces from a surface and puts them in a

different file. Parameters specified below under takeTheseTwoFaces.*
run.test.soleus = 0 # does some tests on the soleus muscle
run.test.createTendon = 0 # tests the tendon creation code
run.test.skin = 0 # prototype of skin generation
run.test.pushAway = 0 # tests the pushing of two surfaces. Parameters

specified below under test.pushAway.*
run.test.meshing = 0 # tests the meshing of an object. Parameter below

under test.meshing.objectId
run.test.sets = 0 # tests the union-find wrapper-class
run.test.surfacevertexrelations = 0

B.2. FILE: SETTINGS.TXT 61

run.test.maths = 0
run.test.calcthickness = 0
run.test.minkowski = 0
run.test.ccsMatrix = 0
run.test.mtl4 = 0
run.test.smartShrink = 0
run.test.smartShrink2 = 0
run.test.convexHull = 0
run.test.normalizedMovement = 0
run.test.bsurface = 0
run.test.meshContraction = 1
run.test.connectivitySurgery = 1
run.test.surfaceVolume = 0
run.test.multigridContractionSolver = 0
run.test.volumeMeshShrink = 0
run.test.selfIntersectRemoval = 0
run.test.cgalDelaunay = 0
run.test.substraction = 0
run.test.rdt2 = 0
run.test.pusharno = 0

test parameters
test.meshing.objectId = vastusintermedius MUSCLE RIGHT # parameter for run.test.

meshing program
test.pushAway.master = Stages/Smooth1/Right_femur_0.vtk # parameters for run.

test.pushAway program
test.pushAway.slave = Stages/Smooth1/Right_sartorius_0.vtk #
test.pushAway.growfactor = 1
takeTheseTwoFaces.filename = debug/skin.vtk # parameters for run.test.

takeTheseTwoFaces
takeTheseTwoFaces.face1 = 10760 #
takeTheseTwoFaces.face2 = 10759 #
test.smartShrink.filename = Muscles/Right_vastusintermedius_0.vtk # Muscles/

Right_AdductorLongus_0.vtk #
test.smartShrink.iterationCount = 1000
test.smartShrink.writeIterationEvery = 10
test.smartShrink.merge.epsilon = 0.1
test.convexHull.filename = debug/spier.vtk
test.volumeMeshShrink.filename = Debug/testSubstraction/result.vtk
test.selfIntersectRemoval.filename = Muscles/Right_vastusintermedius_0.vtk # Debug/

simplified vastusintermedius.vtk
test.cgalDelaunay.filename = Debug/torus.vtk
test.rdt2.filename = Debug/rdt2test.vtk
test.rdt2.triangleIndex = 15762
test.carve.filename1 = Muscles/Right_bicepsfemoris_0.vtk
test.carve.filename2 = Bones/Right_femur_0.vtk
test.smoothing.filename1 = Muscles/Right_vastusintermedius_0.vtk
test.smoothing.iterationCount = 8
test.smoothing.stepsInEachIteration = 25
test.pusharno.filename1 = Muscles/Right_amagnus_0.vtk
test.pusharno.filename2 = Bones/Right_pelvis_0.vtk
test.pusharno.grow = 1
test.pusharno.mutual = 0

test.shrinkBySkeleton.iterationCount = 1
test.shrinkBySkeleton.stepsInEachIteration = 50

debug settings
debug.twoManifold.writeErrorFiles = 0 # saves the surface object to the file FullModel

/Debug/not2manifold.vtk when a non-2 manifold surface is detected. Not used anymore,
because the check was only made for when run.preprocess.meshsurfaces was still used,
that generated non-2-manifold objects.

febio settings
attachment.maxpointdistance = 5 # maximum distance between the calculated attachment

point (done during run.convertattachments) and the mesh vertex potentially assigned
to it.

selfIntersectRemoval.smoothing.iterationCount = 0
selfIntersectRemoval.smoothing.areaSize = 0
selfIntersectRemoval.smoothing.stepSize1 = 0.5
selfIntersectRemoval.smoothing.stepSize2 = -0.49999

62 APPENDIX B. CONFIGURATION FILES

resolve degenerate triangles 2
rdt2.epsilon.edges = 0.1
rdt2.epsilon.angles = 0.005

Stages

attachments.inputStage = AttachmentsRAW
tendons.inputStage = AttachmentsRAW/TendonIndices

smoothThemUp.smoothSteps = 1000
smoothThemUp.taubinSmoother = 1
smoothThemUp.taubin.substeps = 1
smoothThemUp.taubin.lambda = 0.33
smoothThemUp.taubin.mu = -0.331
smoothThemUp.inputStage = SurfacesRAW
smoothThemUp.outputStage = Smooth1

removeUnwantedComponents.inputStage = Smooth1
removeUnwantedComponents.outputStage = UnwantedComponentsRemoved

generateFootTendons.inputStage = UnwantedComponentsRemoved
generateFootTendons.outputStage = FootTendonsGenerated
footTendonGeneration.maxFaceAngle = 60
footTendonGeneration.maxZdistance = 10
footTendonGeneration.attachmentLength = 20

resolveDegenerateTriangles.epsilon = 0.1
selfIntersectRemoval.epsilon = 0.00000000001
resolveSelfIntersections.inputStage = FootTendonsGenerated
resolveSelfIntersections.outputStage = SIR

substractAllFromAllSIR.inputStage = SIR
substractAllFromAllSIR.outputStage = SubstractAllFromAllSIR
substractAllFromAllSIR.growFactor = 0.50
substractAllFromAllSIR.growSteps = 50
substractAllFromAllSIR.useCarve = 1
growAndSmooth.smoothSteps = 2
growAndSmooth.taubin.substeps = 1
growAndSmooth.taubin.lambda = 0.33
growAndSmooth.taubin.mu = -0.331

generateMeshes.inputStage = SubstractAllFromAllSIR
generateMeshes.outputStage = Meshes

volumeMeshCleanup1.inputStage = Meshes
volumeMeshCleanup1.outputStage = MeshesCleanedUp1

createAttachmentConvexHulls.growFactor = 1
createAttachmentConvexHulls.inputStage = Smooth1
createAttachmentConvexHulls.outputStage = Attachments

createTendonConvexHulls.growFactor = 0.5
createTendonConvexHulls.inputStage = Smooth1
createTendonConvexHulls.outputStage = Tendons

meshAttachmentIndices.inputStageAttachments = Attachments
meshAttachmentIndices.inputStageMeshes = Meshes
meshAttachmentIndices.minimumIndexCount = 100
meshAttachmentIndices.outputStage = MeshAttachmentIndices

meshTendonIndices.inputStageTendons = Tendons
meshTendonIndices.inputStageMeshes = Meshes
meshTendonIndices.outputStage = MeshTendonIndices

stageBasedSetup.inputStageMeshes = Meshes
stageBasedSetup.outputname = hamstringcombi_1.3 # __kneemotionoptimize1 #

stageBasedSetup_6.39
stageBasedSetup.outputname.autoinc = 1
stageBasedSetup.bonesAttached = 1

meshcontraction settings

B.2. FILE: SETTINGS.TXT 63

meshcontraction.laplaceoperator = 1
meshcontraction.W_hMode = program # values can be: paper (method from paper) or

program (method deduced from the decompiled code)
meshcontraction.logObjects = 0
meshcontraction.logIteration = 11
test.meshContraction.filename = Muscles/Right_vastusintermedius_0.vtk
test.meshContraction.volumeThreshold = 1e-5
test.meshcontraction.maxIterations = 300

febio debug
febio.debug = 1
febio.debug.elementId = 10364

See febio documentation for details
febio.title = Experiment # name of the simulation (inside the file, NOT the

filename, which can be specified in run.secondsetup.outputname)
febio.dtol = 0.001 # convergence tolerance on displacements
febio.etol = 0.01 # convergence tolerance on energy
febio.rtol = 0 # convergence tolerance on residual
febio.lstol = 0.9 # convergence tolerance on line search
febio.max_refs = 15 # max number of stiffness reformations
febio.max_ups = 10 # max number of BFGS stiffness updates
febio.optimize_bw = 0 # optimize banwidth of stiffness matrix
febio.restart = 0 # generate restart file
febio.cmax = 1E+5 # max condition number of the stiffness matrix
febio.analysis = static # dynamic or static
febio.print_level = PRINT_PROGRESS
febio.linear_solver = pardiso
febio.pressure_stiffness = 0
febio.time_stepper.opt_iter = 10
febio.timesteps = 200 # number of timesteps per second
febio.time_stepper.dtmin = 0.001 # minimum timestep size
febio.time_stepper.dtmax = 0.1 # maximum timestep size
febio.time_stepper.max_retries = 100 # maximum number of times the timestepper can reduce

the size of the timestep
febio.restarter.failcount = 10

overlap settings
fixoverlaps.growFactor = 1 # how many mm should the pushing surface grow

before pushing, used during run.preprocess.resolveOverlaps
secondsetup.fixoverlaps = 0 # apply overlap check after meshes have been

generated, used during run.secondsetup
secondsetup.removeCgalRubbish = 1 # remove disconnected elements generated by CGAL

mesh algorithm. This options was added for surfaces with really bad quality, usually
it is not nessecary to apply this option.

preprocess.surfaces.usemeshsurfaces = 0 # specifies if the output of run.preprocess.
meshsurfaces should be the input for run.preprocess.resolveOverlaps

mesh surface generation
meshsurface.smoothfactor = 0 # amount of smoothing used before mesh is

generated in run.preprocess.meshsurfaces

mesh generation settings
see CGAL documentation http://www.cgal.org/Manual/3.5/doc_html/cgal_manual/Mesh_3/

Chapter_main.html#introsec:param
muscle.facetAngle = 30
muscle.facetSize = 5
muscle.facetApproximation = 0.5
muscle.cellRadiusEdgeRatio = 1.25
muscle.cellSize = 3

skin.facetAngle = 30
skin.facetSize = 2
skin.facetApproximation = 1
skin.cellRadiusEdgeRatio = 4
skin.cellSize = 4

bone.facetAngle = 30
bone.facetSize = 15
bone.facetApproximation = 0.75
bone.cellRadiusEdgeRatio = 4
bone.cellSize = 100

64 APPENDIX B. CONFIGURATION FILES

fast.facetAngle = 15
fast.facetSize = 40
fast.facetApproximation = 1
fast.cellRadiusEdgeRatio = 40
fast.cellSize = 20

material settings
muscle material settings
see febio documentation for meanings
muscle.material.type = neohookean

muscle.material.neohookean.density =1
muscle.material.neohookean.youngs_modulus = 120
muscle.material.neohookean.poissons_ratio = 0.4

muscle.material.isotropic_elastic.density =1
muscle.material.isotropic_elastic.youngs_modulus = 0.075
muscle.material.isotropic_elastic.poissons_ratio = 0.49

muscle.material.mooneyrivlin.density = 1
muscle.material.mooneyrivlin.c1 = 0.06
muscle.material.mooneyrivlin.c2 = 0.12
muscle.material.mooneyrivlin.k = 1800

tendon.material.type = neohookean
tendon.material.neohookean.density =1
tendon.material.neohookean.youngs_modulus = 1200
tendon.material.neohookean.poissons_ratio = 0.4

tendon.material.isotropic_elastic.density =1
tendon.material.isotropic_elastic.youngs_modulus = 1.7
tendon.material.isotropic_elastic.poissons_ratio = 0.49

tendon.material.mooneyrivlin.density = 1
tendon.material.mooneyrivlin.c1 = 60000
tendon.material.mooneyrivlin.c2 = 10000
tendon.material.mooneyrivlin.k = 80000

contact settings
see febio documentation for detailed explanations

febio.collisionavoidance = 1 # write the sliding interfaces to the febio file.
Usually on.

sliding.type = sliding_with_gaps # options: sliding_with_gaps, facet_to_facet or sliding2
sliding.laugon = 0 # use augmented lagrangian method
sliding.penalty = 5 # in case of laugon: scale langrange multiplier

increment
otherwise: multiplier to penetration distance to

resolve intersection
sliding.auto_penalty = 1 # automatically determine penalty value, probably not

useful when using laugon
sliding.two_pass = 0 # use two passes (always use this)
sliding.tolerance = 1 # aug. lagrangian solution tolerance 0=turnoff
sliding.gaptol = 0 # tolerance of gap value, gap should be smaller than

this value, in absolute measure 0=turnoff
sliding.minaug = 0 # minimum number of augmentations 0=turnoff
sliding.maxaug = 10 # maximum number of augmentations, when maxaug is

reached, FEBio will move to the next timestep,
regardless of force and gap tolerances have been

met
sliding.fric_coeff = 0 # friction coefficient, between 0 and 1
sliding.fric_penalty = 0 # friction penalty, only works with sliding_with_gaps
sliding.ktmult = 1 # scale factor for tangential stiffness
sliding.seg_up = 0 # unimportant, leave at 0

tied interfaces are only used for tieing tendons to muscles
tied.penalty = 100000
tied.laugon = 0
tied.tolerance = 0.00001

Abstract

Studying human motion using musculoskeletal models is a common practice in the field
of biomechanics. By using such models, recorded subject’s motions can be analyzed in
successive steps from kinematics and dynamics to muscle control. However simulating
muscle deformation and interaction is not possible, but other methods such as a finite
element (FE) simulation are very well suited to simulate deformation and interaction of
objects. We present a pipeline that can combine these two, by automatically generating
a FE simulation based on subject-specific segmented MRI data, and a motion performed
by the same subject. The pipeline resolves several types of data inconsistencies: noise
in the dataset is removed by smoothing, objects that contain self-intersecting parts are
corrected, missing tendon geometries are generated automatically and overlaps between
objects are resolved. Much effort was made to resolve overlaps in a meaningful way of
which several methods are discussed. This report shows the different steps of the pipeline,
such as solving overlaps in the segmented surfaces, generating the volume mesh and the
connection to a musculoskeletal simulation. The pipeline is validated by recreating an
experiment done on live subjects where passive hamstring resistance was measured and
by comparing experimental results.

	Introduction
	Related work
	Neuromusculoskeletal simulation
	Finite element simulation in biomechanics
	Geometric algorithms
	Surface smoothing
	Self intersections
	Self intersect removal algorithm
	Surface intersection removal
	CGAL

	Research objectives

	Pipeline overview
	MRI to volume mesh
	MRI segmentation
	Bones and muscles
	Attachments and tendons

	Stage overview
	Smoothing
	Removing unwanted components
	Generating missing tendons
	Resolve self-intersections
	Remove degenerate triangles
	Finding a seed triangle

	Resolving overlaps
	Order of overlap removal

	Generating volume meshes
	Creating attachment and tendon convex hulls
	Converting hulls into volume mesh indices

	Resolving overlaps
	Push-based method
	Shrink-based method
	Shrink by smoothing
	Shrink to skeleton

	Overlap resolving using boolean operators
	Carve
	Substraction by self-intersection removal

	Experiment
	Musculoskeletal input
	Musculoskeletal models
	Coordinate system conversion

	Implementation
	OpenSim
	FEBio
	Pipeline parameters

	Hamstring stretch experiment
	Materials
	Muscles
	Motion
	Results
	Analysis and comparison

	Conclusion and future work
	Software design
	Libraries

	Configuration files
	File: setup.txt
	File: settings.txt

